⑴ seo网络盈利的秘籍 我是怎样通过网络赚到100w
我的经验是,大量的相关文章+合理的站内链接+稳定的更新频率。
如何做好seo优化策略可参考如下方法:
在搜索引擎优化中,SEO策略影响到最终的优化效果。SEO策略不管对中小网站还是大型网站都是重要的,而对于大型网站,制定一个好的SEO策略尤为重要。
第一部分:关键词分析
关键词分析是所有SEO必须掌握的一门功课,大型网站虽然有海量的数据,但是每个页面都需要进行关键词分析,除了SEO之外,策划、编辑也需要具备一定的关键词分析能力。
关键词分析的基本原则:
1、 调查用户的搜索习惯:这是一个重要的方面,只有了解用户的搜索习惯,才能把我用户的搜索需求,用户喜欢搜索什么?用什么搜索引擎?等等
2、 关键词不能过于宽泛:关键词过于宽泛会导致竞争激烈,耗费大量时间却不一定得到想要的效果,并且可能降低了关键词的相关性。
3、 关键词不能过冷:想想,没有用户搜索的关键词,还值得去优化吗?
4、 关键词要与页面内容保持高度的相关性:这样既有利于优化又有利于用户。
关键词挑选的步骤:
1、 确定核心关键词:我们应该考虑的是哪一个词或者两个词能够最准确的描述网页的内容?哪一个词用户搜索次数最多?
2、 核心关键词定义上的扩展:例如核心关键词的别名、仅次于核心关键词的组合等、核心关键词的辅助等。
3、 模拟用户思维设计关键词:把自己假想为用户,那么我会去搜索什么关键词呢?
4、 研究竞争者的关键词:分析一下排名占有优势的竞争对手的网页,他们都使用了什么关键词?
第二部分:页面逆向优化
为什么要做逆向优化?因为在大型网站中,页面的优化价值一般不同于中小网站。考虑到各种综合因素(例如品牌、页面内容、用户体验等),大型网站的页面优化价值大多数呈现逆向顺序,即:最终页>专题页>栏目页>频道页>首页。
如何针对各页面进行关键词分配呢?通常情况是这样的:
1、 最终页:针对长尾关键词;
2、 专题页:针对热门关键词,例如"周杰伦";
3、 栏目页:针对固定关键词,例如"音乐试听";
4、 频道页:针对核心关键词,例如 "音乐";
5、 首页:不分配关键词,而是以品牌为主。
在进行关键词分配后,我们可以在最终页中添加匹配的内链作为辅助,这是大型网站内链的优势。
第三部分:前端搜索引擎友好,包括UI设计的搜索友好和前端代码的搜索友好两点
1、首先来看UI设计的搜索引擎友好:主要是做到导航清晰,以及flash和图片等的使用,一般来说,导航以及带有关键词的部分不适合使用flash及图片,因为大多数搜索引擎无法抓取flash及图片中的文字。
2、然后是前端代码的搜索引擎友好:
a、代码的简洁性:搜索引擎喜欢简洁的html代码,这样更有利于分析。
b、重要信息靠前:指带关键词的及经常更新的信息尽量选择出现在html的靠前位置。
c、过滤干扰信息:大型网站的页面一般比较复杂,各种广告、合作、交换内容以及其他没有相关性的信息比较多,我们应该选择使用js、iframe等搜索引擎无法识别的代码过滤掉这一部分信息。
d、代码的基础SEO:这是基础的SEO工作,避免html错误以及语义化标签。
第四部分:内部链接策略
为什么要强调内部链接策略?因为内链具有以下优势:
1、 大型网站海量的数据使内链的优势远远大于外链。外链的数量可能几千几万几十万,但是大型网站拥有成百万上千万甚至上亿的海量网页内容,如果用这些海量的网页做内链的建设,优势是很明显的。
2、 网站内的网页间导出链接是一件很容易的事情。
3、 提高搜索引擎对网站的爬行索引效率,增强收录,也有利于PR的传递。
4、 集中主题,使该主题的关键词在搜索引擎中具有排名优势。
在内链建设中,应该遵循以下原则:1、控制文章内链数量:穿插于文章内的链接可以根据内容的多少控制在3-8个左右。2、链接对象的相关性要高。3、给重要的网页更多的关注:使重要的更有关键词价值的网页得到更好的排名。4、使用绝对路径。
第五部分:外部链接策略
在强调大型网站的内链建设的同时也不能太忽视了外链的建设。外链的建设虽然没有中小网站那么重要,但是也具有很高的价值。通常可以通过交换链接、制造链接诱饵、投放带链接的软文等方法来建设外链。
1、 来看交换链接应该要遵循哪些原则:
a、链接文字中包含关键词;b、尽量与相关性高的站点、频道交换链接;c、对方网站导出链接数量不能过多,过多的话没有太大的价值;d、避免与未被收录以及被搜索引擎惩罚的网站交换链接
2、 制造链接诱饵:制造链接诱饵是一件省力的工作,这使得对方网站主动的为我们添加链接。制造链接诱饵的技巧很多,但是可以用两个字来概括:创意。
3、 带链接的软文投放。指的是在商务推广或者为专门为了得到外链而进行的带链接的软文投放。
第六部分:网站地图策略
有很多大型网站不重视网站地图的建设,不少大型网站的网站地图只是敷衍了事,做一个摆设。其实网站对于大型网站是很重要的,大型网站海量的数据、复杂的网站导航结构、极快的更新频率使得搜索引擎并不能完全抓取所有的网页。这就是为什么有的大型网站拥有百万千万甚至上亿级的数据量,但是却只被搜索引擎收录了网站数据量的一半、三分之一甚至更少的一个重要原因。连收录都保证不了,怎么去做排名?
Html地图:
1、 为搜索引擎建立一个良好的导航结构。
2、 Html地图中可以分为横向和纵向导航,横向导航主要是频道、栏目、专题等链接,纵向导航主要是针对关键词。
3、 每个页面都有指向网站地图的链接。
Xml网站地图:主要针对Google、yahoo、live等搜索引擎。因为大型网站数据量太大,单个的sitemap会导致sitemap.xml文件太大,超过搜索引擎的容忍度。所以我们要将sitemap.xml拆分为数个,每个拆分后的sitemap.xml则保持在搜索引擎建议的范围内。
第七部分:搜索引擎友好写作策略
搜索引擎友好写作是创造海量数据对取得好的搜索引擎排名的很关键的一部分。而SEO人员不可能针对每个网页都提出SEO建议或者方案,所以对写作人员的培训尤为重要。如果所有写作人员都按照搜索引擎友好的原则去写作,则产生的效果是很恐怖的。
1、 对写作人员要进行反复培训:写作人员不是SEO,没有经验,不可能一遍就领悟SEO的写作技巧。所以要对写作人员进行反复的培训才能达到效果。
2、 创造内容先思考用户会去搜索什么,针对用户的搜索需求而写作。
3、 重视title、meta写作:例如Meta虽然在搜索引擎的权重已经很低,但是不好的meta写作例如堆积关键词、关键词与内容不相关等行为反而会产生负作用。而Title的权重较高,尽量在Title中融入关键词。
4、 内容与关键词的融合:在内容中要适当的融入关键词,使关键词出现在适当的位置,并保持适当的关键词密度。
5、 为关键词加入链接很重要:为相关关键词加入链接,或者为本网页出现的其他网页的关键词加入链接,可以很好的利用内链优势。
6、 为关键词使用语义化标签:
第八部分:日志分析与数据挖掘
日志分析与数据挖掘常常被我们所忽视,其实不管是大型网站还是中小网站,都是一件很有意义的工作。只是大型网站的日志分析和数据挖掘工作难度要更高一些,因为数据量实在太大,所以我们要具备足够的耐心来做该项工作,并且要有的放矢。
1、 网站日志分析:网站日志分析的的种类有很多,如访问来源、浏览器、客户端屏幕大小、入口、跳出率、PV等。跟SEO工作最相关的主要有以下三种:a、搜索引擎流量导入;b、搜索引擎关键词分析;c、用户搜索行为统计分析
2、 热点数据挖掘:我们可以通过自身的网站日志分析以及一些外在的工具和SEO自己对热点的把握能力来进行热点数据的挖掘。热点数据的挖掘主要有以下手段:a、把握行业热点,可以由编辑与SEO共同完成;b、预测潜在热点,对信息的敏感度要求较高,能够预测潜在的热门信息。c、自己创造热点,如炒作等;d、 为热点制作专题
第九部分:为关键词创作专题
除了最终页面,各种针对热门的关键词所制作的专题应该作为网站的第二大搜索引擎流量来源。我们在对热点数据进行挖掘后,就可以针对这些热门关键词制作专题了。制作的专题页的内容从何而来?我们一般通过程序实现对应关键词相关的信息进行筛选聚合,这样就使得内容与关键词高度匹配,为用户、为搜索引擎都提供了所需要的内容。
当然,仅仅建立一个专题而没有辅助手段是很难保证专题的搜索引擎排名的,我们可以通过文章内链、频道页推荐、或者最终页的专题推荐来获得链接达到效果。
1、为热点关键词制作专题
2、关键词相关信息的聚合
3、辅以文章内链导入链接
⑵ 大数据市场有多大 怎么利用大数据赚钱
大数据市场有多大 怎么利用大数据赚钱
“大数据的市场规模没有天花板。”国务院发展研究中心信息中心研究处处长李广乾认为。不过细想,这正是目前各大企业和资本疯狂追逐大数据产业的重要原因。
“单独讨论大数据意义不大,它是依附于具体业务,和各个行业密切相关的。”李广乾认为,大数据产业规模和两大因素相关:一是经济发展水平,需要大数据的业务越多,市场体量就越大;二是信息化发展水平,能够产生数据的终端越多,数据就会越聚越多,而数据的生产是没有上限的。目前,大数据的金矿还仅是开挖了“冰山一角”。全球来看,Gartner2016年最新的技术成熟度曲线显示,大数据作为新兴领域,已经进入应用发展阶段,基础设施建设带来的规模性高速增长出现逐步放缓的趋势,技术创新和商业模式创新推动各行业应用逐步成熟,应用创造的价值在市场规模中的比重日益增大,并成为新的增长动力。从总体规模看,2016年,全球大数据市场规模实现16.5%的增长,预计将连续3年保持增速在15%左右。同时,大数据成为全球IT支出新的增长点,2016年,有近40%的企业正在实施和扩大大数据技术的应用,另有30%计划在未来12个月内应用大数据。“说大数据产业是一张画得很大的饼显然是片面的。”工信部赛迪研究院软件所所长潘文预测,包括大数据硬件、大数据软件、大数据服务等在内的大数据核心产业环节,2016年达到3100亿元,将在2020年超过1万亿元;大数据关联产业规模2016年超过5万亿元,将在2020年超过10万亿元;大数据融合产业规模2016年达到3.5万亿元,将在2020年超过20万亿元。“从大数据核心产业结构看,基于大数据的服务是大数据核心产业的主体,其规模约占大数据核心产业规模的90%,未来,服务也将是大数据产业的最核心部分。”潘文说。做数据“搬运工”目前国内大数据公司分为两类:一类是已有获取大数据能力的公司,如网络、腾讯、阿里巴巴等互联网巨头及华为、浪潮、中兴等企业,涵盖了数据采集、数据存储、数据分析、数据可视化及数据安全等领域;另一类则是初创大数据公司,依靠大数据工具,针对市场需求,为市场带来创新方案并推动技术发展。不同的大数据公司,盈利模式也不相同。如果把大数据产业比作房地产开发,那么海量数据就是地产开发时的土地资源,数据挖掘开发就是地产搭建盖楼。大数据主要的盈利模式也是围绕这两方面展开,一是通过直接“搬运”数据赚钱,二是通过数据加工分析盈利。“我们就像一个自来水厂一样,用户要你提供干净的自来水,对方可能是酒厂、饭店、饮料厂,他把你的水做成饮料或酒。”聚合数据就是一家主要依靠为客户提供数据盈利的公司,公司创始人左磊对其商业模式作了一个形象的比喻。在开发APP应用过程中,左磊发现客户对于数据的需求非常大,但他们本身却没有能力去做这些事情。聚合数据的主营业务,就是整合市面上有价值的数据源,从车辆违章信息、航班火车查询、全国加油站实时油价,到在线试题、电影、股票,做成标准化的API(应用程序编程接口),开放给开发者、企业及微信公众号用户等使用,为他们免除数据收集、维护等环节。简言之,聚合数据是一家数据源公司,充当的是数据“搬运工”的角色。在变现模式上,针对一些本身成本不高的服务,聚合数据会对用户实行免费,而对一些成本相对高的服务,会按照每个接口或服务的成本收取不同的费用。2016年,聚合数据光API接口一项营收就超过1000万元。聚合数据的盈利模式是数据买卖市场一个有代表性的类型。另一个代表性类型是,国内乃至全球第一家大数据交易所——贵阳大数据交易所,自2015年4月正式挂牌运营以来,仅用两年多时间,就实现了可交易数据总量超过150PB,内容涵盖政府、金融、交通等30大类领域,并于今年上半年实现正现金流,预计今年底累计交易流水将突破2亿元人民币。数据的“消化”和“利用”如果说搬运数据是秀肌肉的“体力活”,那么分析数据并提供解决方案就是拼智商的“脑力活”,相当于把收集来的数据“消化”“利用”好。直接售卖数据是比较底层的盈利方式,而对数据进行处理加工则在商业模式上具备更多的想象空间。数据分析可大致分为直接提供数据分析工具和输出解决方案两种模式。潘文说,数据分析工具通常可以实现情报挖掘、舆情分析、销售追踪、精准营销、个性化推荐、网站/APP分析等功能,收费方式采取按需购买,部分功能服务免费,部分功能服务收费。阿里云的“数加”平台就是典型的数据工具盈利模式。阿里云大数据事业部总监徐常亮表示,阿里云“数加”平台,承载着阿里巴巴集团、蚂蚁金服的数据,可提供一站式的数据计算、加工、处理等服务,用户不用自建计算平台。此外,基于“数加”平台,阿里云还提供数十款应用工具,覆盖数据采集、计算引擎、数据加工、数据分析、机器学习、数据应用等数据生产全链条。计算引擎之上,“数加”平台提供了最丰富的云端数据开发套件,包括数据集成、数据开发、调度系统、数据管理、运维视屏、数据质量、任务监控。在数据分析方面,通过移动数据分析产品,开发者可快速搭建日志采集、分析系统;通过“数加”平台BI报表产品,3分钟即可完成海量数据的分析报告。在机器学习方面,“数加”平台发布的机器学习工具,可基于海量数据实现对用户行为、行业走势、天气、交通等的预测。大数据公司百分点的展厅内有一面弧形墙,可以24小时实时更新数据资料和图谱。这面墙上有全网当日产品销售统计和热销产品榜单,每一个产品都有详情介绍。百分点研发总监苏海波介绍,5.5亿用户的“画像”汇总于此,包括购物偏好、网购金额变化趋势、阅读兴趣等。用户的任何网上行为都会成为大数据的一部分,经过筛选加入到用户的数据中。通过与百分点合作,商户可以根据用户消费偏好,定向推送商品;旅行社可以定向推送旅游行程信息和报价;新闻资讯APP则可以推送用户感兴趣的信息。在输出解决方案上,大数据还可以应用到医疗、教育、零售、通信等传统行业。通过大数据产生更多收益,节约成本,优化原有行业,衍生出新的商业模式。
⑶ 怎么利用SEO去赚钱
1.一般需要做seo优化的企业都是中小企业,因为一般大型企业都是有专门做seo优化的部门,中小企业的老板一般都是不懂seo的,所以他们的需求比较大,可以去给他们的企业做顾问,然后将他们的企业网站排名上去。
2.做一个大流量网站赚取广告费
这个方法也是一个非常不错的方法,你可以去建立一个流量大的网站,什么是流量大的网站呢?就是那些有很多浏览者观看的网站,例如电影小说之类的网站,通过seo的手法,或者也可以用其他的方法,提高自己的网站流量,挂上的网络联盟广告赚取广告费。
3.卖网站
这里所说的卖网站是卖成品站,有排名流量的网站。
这里是一个比较讲究技术的方法,你可以不用去找产品,也不用去找合作,但是要深挖自己的优化技术,然后做出一个网站或者优化一个关键词到网络首页,再去例如A5之类的交易网站挂上信息去兜售。
4.做培训
seo的培训市场也是比较大的,只要掌握了顶尖的seo技术,做出成功的案例出来,让自己的网站排在网络前面,并且如果有这个技术的话最好是霸屏,这时你的名气非常大了的话,那你就可以出来做培训了,培训的市场也是非常大的。
⑷ 如何利用数据赚钱
消费者分为懂行和不懂的小白,对于现在的社会,人们的交流变的更加的广泛,交往的朋友各行各业都有,因此有想买的东西时有些人看重的不在是越贵越好了。营销策划公司认为,对于那些外观上区别不大的商品来说,用数据去竞争市场是最为有效的一种竞争方式。
这是一辆与众不同的汽车,它拥有宽阔的车厢,那扇拱顶似的车门,那华丽的皮革...你感到了吗?这是一辆多么美丽的车,这辆车的售价某元。
气缸容积6749毫升,排量6.7公升,v-12前置发动机,缸径92.0毫米,总长度(英寸)202.8,总宽度(英寸)78.2...这辆车的售价某元。
手机或者电脑是生活中的必需品,你买手机或者电脑的时候是选择外观品牌还是实际参数呢?反正小编是选择参数,虽然在价格上差不多的产品但是在参数上却很大,毕竟很多品牌手机在刚出来的时候价格很高很高的,比如说一个1500块的手机在两年后将要退出市场,就算是出厂价格大约也会在八百多附近!天啊价格相差一半还要多,这是因为低价销售处理库存吗?答案不是,处理库存价格会在三百到五百之间,这是什么原因造成的呢?其实在开始的时候会有大量的宣传,其成本也就高了,但是在后期主要推出的产品不是这个了成本也降下来了,最后商品已经停产了,不再打算销售了,那么就亏本处理了。
品牌营销用数据说话是真实有效的,特别是在那些电子产品上外观差距不大的时候,数据就能够展现出商品的优点,与其它产品的不同,就像手机店在推广产品的时候永远都是一个价格然后就是手机参数,但是在超市中永远都是只有价格,什么都没有,用参数竞争是市场中使用的一种竞争方式,也是一种策略,当你的商品数据比别更高的时候品牌在市场中的竞争力就会更大。
⑸ 做seo优化赚钱吗到底该如何做
每一个SEOer都想把SEO做到炉火纯青的底部,我也是一样,但是对于刚入门的小白们怎么才能做好,今天我就给大家屡屡思路。
首先,要明白SEO的目的是要进行网络营销,通过SEO人员的技术性和辛苦性工作,达到让网站最优化,从而提高用户体验,达到比较高的转化率的目的,流量多多,询盘多多,目的就达到了。
4、问答平台:这个很早就接触过,因为做电子商务,在工作中发布产品信息的时间经常能用到此方法,非常给力,将此方法运用到自己的博客中,将会继续给力!
5、论坛外链:说白了就是发布帖子,做好锚文本;然后在个性签名中写上自己的网址。
6、网络书签:提交自己的站到主流搜索引擎以及权重的博客搜索引擎;利用好网络书签。
⑹ 数据如何赚钱
现在是大数据时代,如果有海量的数据,而且数据是有意义的,总能通过大数据分析来得到一些有价值的信息/知识。
利用数据赚钱,一种方案是直接卖数据,让别人去分析。一种是分析出结果来,再卖分析结果。还有一种是利用数据吸引人来,通过流量赚钱。
直接卖数据一种是通过API卖,每次只能给一小部分数据;还有一种是海量数据卖。后者可能会带来数据资产转移的后果,卖了一次就没法卖了。可以考虑UZER.ME大数据安全共享解决方案。
⑺ 自动优化数据怎么赚钱
自动优化数据赚钱的方法有:①挂广告创收,如网络联盟广告;②卖产品,比如电子教程,冷门的抢手货;③做客户,这也很有用;④为他人提供SEO优化服务。基本上以上四种方法都是可操作的,这也不是什么新鲜事。以前是这样,现在和将来,都是差不多的方法,只是策略不同。第一,挂广告赚钱需要网站有大量的访客。只有广告量和点击率上去了,才能赚钱。适合内容的网站,如小说、文学网站、古文学习网站等。,都是不错的选择。不建议做交叉领域大的网站,尽量做内容垂直的网站,这样可以专心做相关的长尾词。第二,卖产品还是很有潜力的,但是不要选错领域。有些产品是无论如何也卖不出去的,因为你面前有淘宝、JD.COM等商城。你要选择这些大网站比较稀缺的那种,比如辅导班,视频制作,编程学习,设计教程等等。冷门的商品有保健品和日用品(大商场没有)。这类网站不少。有的人去别的网站买教程等资源,然后放到自己的网站上低价出售。别看几块几十块的,加起来还挺多的。第三,做淘的机会很多。现在的淘网站不赚钱的原因在于同质化严重,缺乏特色。站长总喜欢贪,比较麻烦。淘客也要选择自己熟悉的领域,做垂直行业,走内容电商的道路,比如专注礼品、零食、汽车用品等。,而不是什么都做。经常看到一些淘网站系统说可以直接调用描述api,自动更新数据,自动优化SEO,但是没用。还是要手动更新内容,才能获得搜索引擎和用户的青睐。第四,利用优化技术为其他公司进行关键词排名。这个有点辛苦,但是也很赚钱。这样适合组队。个人做的话,主要是精力不够,太忙。如果他们给不了客服号码,就很容易名誉扫地。不建议投机取巧,因为这样会毁了整个优化行业的名声。
⑻ 公司如何通过大数据赚钱
公司如何通过大数据赚钱
现代大数据项目具备巨大的节约成本的潜力,其效果对于过去的数据处理方式而言有如童话。但需要谨记的是,在投入时间和资源到大数据项目之前,首先要确认你的项目是收益大于成本的。只有傻瓜才会匆匆对一个点子一见钟情并倾其所有。
大数据无疑是时下炙手可热的流行词汇,然而,我们鲜少看到具体大数据如何带来收益,和具体如何实现的例子,这是怎么回事呢?
多年来,在经历了几个通信和投行的大数据相关早期实施项目后,我认为这个新兴技术的收益主要在于:实现对复杂系统更为精准的剖析,例如股票市场或供应链。(投行成为最早一批应用大数据分析的行业之一,可谓毫不意外。对利用技术提升效率,创造效益更为敏锐的商业模式,往往也是更赚钱的。)
在投行的日常工作中,为了精准地选择投资机会、选购股票,有大量对文档处理的需求,例如新闻简报,财务报表。如果人工进行,工作量过于庞大。因此助理分析师们往往简化他们的预测分析过程,并使用电子表格来完成绝大部分工作。通过大数据技术,投行可以整合各种信息,减少可能的(简化分析带来的)风险,从整体上带来更优越的分析和预测能力。
公司如何通过大数据赚钱
通过大数据平台,股票经纪和投资经理们可以聚合各种来源的非格式化数据,辅助判断哪些公司值得投资。所谓‘非格式化数据’包括如公司新闻,产品评论,供应商数据,价格变化,将这些信息以所谓“大数据”形式整合,通过建模,帮助股票经纪决策买入或售出股票。
有些采用如上方式进行投资预测的公司,很注重节约实施成本,例如使用云平台(如AWS),先从很小数量的服务器开始,随着获益增长,逐步提高投入。一位我认识的分析师,从一家大投行离职创业后,在不到六个月的时间内,仅仅使用非常有限的投入,创立了一个盈利良好的大数据交易系统。
即便在传统制造领域,大数据仍然可以提升预测能力。我曾经担任过顾问的某欧洲一线汽车制造厂商,通过建立一个钢材交易成本的分析系统,选择更好的时机,以更优价格买入原材料。这个系统由开源Java框架Hadoop创建,整合了多个供应商的共计15Tb的数据,在两年内为该公司节省了1600万美元。
这个项目的成功主要有两个原因:首先,公司有足够的信息为所有的供应商建模;其次,该项目节省的原材料成本超过了实施这个项目的费用。
公司为何因为大数据亏钱
然而,并非每个大数据项目都会这样成功。公司在大数据项目上以亏损告终的概率,有时和成功的概率相差无几。大数据项目失败的早期症状有很多种,最常见的问题如:
步子迈太大:大数据并不需要一笔巨大的预算,如果怀着巨大的投入将带来巨大回报的预期开始一个大数据项目,往往会产生问题。在正式开始前,明智的做法是,尝试用有限的投入,在小范围内测试这个技术是否确实能带来预期的收益。按这样的节奏,一个项目可以按部就班地随着收益逐步提高,而逐步扩大投入规模,确保收益始终大于投入。
低估人力投入:在开始实施一个大数据系统前,问自己一个简单的问题:这个项目是否可以不需要持续的人工支持来运作?如果答案是,需要人工支持,那么建议停止项目。建立这样一个项目往往意味着百万级的损失,无法在有利润情况下保持维护和运行。
迷信自然语言处理:大数据有个经常听到的功能是,通过自然语言处理,将各种领域的各种数据处理成直接可读可理解的形式。这听起来确实很赞,但是在实际应用中,往往不尽如人意。自然语言处理仍然存在许多妨碍应用的限制,主要由于人工智能的发展还不够--而且在可见的10年内,这个情况可能不会有很大改观。
现代大数据项目具备巨大的节约成本的潜力,其效果对于过去的数据处理方式而言有如童话。但需要谨记的是,在投入时间和资源到大数据项目之前,首先要确认你的项目是收益大于成本的。只有傻瓜才会匆匆对一个点子一见钟情并倾其所有。
以上是小编为大家分享的关于公司如何通过大数据赚钱的相关内容,更多信息可以关注环球青藤分享更多干货
⑼ 通过大数据如何赚钱
首先要确定自己有的“大数据”是什么数据,大到怎样的量级,其中包含的数据元素有多少;
其次找到自己拥有的数据本身的商业属性,找到需要这些数据的用户,并确定他们对这些数据需要是否刚性,以及调研可以为使用这些数据的用户带来哪些价值或者改善;
最后就是设计一套运营模式,让这些数据变现。包括可以一次性的出售,这基本上不会有太多价值;更好的方式是数据动态更新,提供各种数据之间关联分析和目标组合,分别按照不同用户需要持续提供,也就可以长期的赚钱了。
市场上多数大数据本身并非真正的大数据,只是一部分数据资料而已!
⑽ “大数据”要这样用才赚钱!
“大数据”要这样用才赚钱!
大数据的生意经其实很简单,就是收入增加,花费减少;就是增加客户,提高客户体验,提高资金回报的杠杆率;大数据应用成熟之后,大数据可以预测商业未来,发现新的商业机会。
一石激起千层浪,国务院发布的2015 第50号文《促进大数据发展行动纲要》刷满了朋友圈,特别是其中提到了大力推动政府部门数据共享,稳步推动公共数据资源开放。2017年底前形成跨部门数据资源共享格局,到2018年实现统一共享平台全覆盖和数据共享及交换。2020年培育10家国际领先的大数据核心龙头企业,500家大数据应用、服务和产品制造企业。
众所周知,大数据商业价值巨大。但是中国大数据的商业价值还没有被充分挖掘。主要的困难在大数据的分散,具有价值的数据大部分集中在在政府内部,垄断国企业,以及互联网巨头之中。分散的数据无法帮助企业拿到具有价值的信息,无法实现大数据的商业变现。政府开放数据,以及大数据交易市场的建立是中国大数据商业价值应用的重中之重。
另外大数据的应用场景和大数据隐私问题,也是大数据商业应用功能的两大问题,不知道数据应用场景,就无法寻找具有价值的数据,就无让数据发挥作用,大数据的应用就会停留在解决数据采集、处理、存储等大数据1.0时代的低级阶段,无法实现大数据商业变现,无法激励企业进一步投资大数据,无法形成数据价值应用的生态循环。大数据隐私问题是所有企业不能回避的问题,到底何种数据可以进行交换,何种数据可以采集和变现,何种数据可以作为商品在市场流通,这些问题既影响个人隐私保护,又影响到企业购买数据产品的积极性,同时也影响了数据企业的发展。
中国大数据企业分为三类,一类是大数据技术公司,为企业提供大数据平台搭建,技术咨询,大数据计算和存储的产品,例如华为、亚信、浪潮等传统IT公司。一类是大数据服务公司,为企业提供基于大数据技术的服务、平台、产品。包括为企业搭建大数据挖掘工具,搜索引擎,分析引擎等大数据处理平台,大数据清洗和挖掘服务例如明略科技,ADMaster,百分点。最后一类是提供数据产品的大数据公司,他们拥有数据,加工生成具有价值的数据,为市场提供标准的数据产品。例如芝麻信用,TalkingData,九次方,星图数据等。
中国大数据市场的数据来源有四种,一种是通过网络爬虫采集的外部数据,大多数提供舆情分析的公司就是通过爬虫技术来进行数据采集的。例如海量数据。一种是提供SaaS服务得到的数据,例如Talkindata。另外一种是靠和运营商或政府合作,通过数据挖掘得到的数据,例如亚信和九次方。最后一种就是自身平台产生的数据(电商、旅游、媒体等互联网企业),包括BAT以及较大的一些互联网公司如360、当当、唯品会、聚美优品、携程、今日头条等。
一、开放数据的价值
开放数据就是政府向社会公布自己所拥有的,并经过脱敏的数据。包括天气数据、GPS数据、金融数据、教育数据、交通数据、能源数据、医疗数据、政府投资数据、农业数据等。这些原始数据本身并没有明显的商业价值,但经过一些公司加工之后,可以产生巨大的商业价值。
开放数据在美国有几千亿美金的市场,包括300亿美金的气象数据,900亿美金的GPS数据,上千亿美金的医疗数据。但政府开放的数据是原始数据,数据自身的商业价值并不大,需要专业的公司对数据进收集,清洗,挖掘,展现,从而形成具有商业价值的数据。在美国有很多公司是依靠加工政府开放数据而实现其商业价值的,例如处理天气数据的Zillow公司,the weather channel 公司,以及处理GPS数据的Garmin公司,它们的总市值已经超过了一百亿美金。
1 、政府开放数据的主要范围
a政府收集和制造的科学数据。例如天气数据,政府资助的医疗研究数据。这些数据都可以作为公共资源进行使用。
b 政府运行的数据,例如政府支出或大型项目运行数据。开放数据一方面可以增加民众对政府的信任,另一个方面可以给一些公司带来商业机遇。
c监管行业的数据。这些数据由企业提供给政府,并且经过政府二次加工。这些宏观数据对于产业规划,企业的投资战略都有很大影响。
2、 中国开放数据之路的挑战
a 国家对数据治理还没有完成。很多数据没有集中管理,还是处于信息孤岛状态,这些都是开放数据需要解决的问题。数据治理投资巨大,时间周期较长,都是巨大的挑战。
b 一些开放数据还不是电子形式。例如医疗数据和教育数据,在一些地区还处于纸质记录状态,没有形成电子档案。这些数据的电子化也是一个较大的挑战。
c 开放数据的脱敏和整合将是一项重大的挑战。特别是国有企业的数据,哪些数据可以公开,哪些数据需要脱敏,如何整合各个地方的数据,这些都是一个挑战
d 大数据服务公司和大数据人才匮乏。由于大数据市场刚刚开始,市场上缺少大数据人才和大数据服务公司,公开的数据短时间可能很难产生商业价值,这会影响政府和企业开放数据的积极性,不利于形成良性的大数据商业市场,会影响开放数据项目的持续发展。
3、有关开放数据一些建议
人类社会即将进入数字时代,开放数据将会是巨大的生产力。政府已经认识到了开放数据的价值,会持续推动政府和国企的数据开放。即使短时间内开放数据的投资看不到商业价值,但其未来经济价值会促使政府坚持开放数据的政策,持续进行投资。就像中国的高速公路,开放数据是另外一条信息高速公路,将数据转化为资产,转化为巨大的社会生产力,帮助企业实现更大的商业价值。
对于数据拥有者的政府,需要在保障公共安全和个人隐私的前提下,完成数据治理和数据整合,逐步向社会开放数据,并提高数据质量,公开面向所有个人和企业,有效利用政府科技资金,让利益相关企业和个人参与到开放数据项目中,鼓励创新,接受外部挑战,利用集体智慧,实现数据最优选择。
对于国有企业,需要在保护自身商业利益的前提下开放数据,帮助各自产业链企业的发展。同时开放数据也可以帮助其自身进行产业规划,进行有效投资,发现市场机会和风险,稳健经营,科学决策。企业可以利用开放数据提高生产效率,减少资源浪费,降低决策失误风险。产业链企业的良性发展,也会推动国企自身发展和进化,提高竞争力,优化企业经营,实现产业共赢。
对于企业家,开放数据将会作为新的资源,帮助企业进行发展,聚焦新的商业机遇,特别是在开放数据影响较大的保健行业,金融行业,能源行业,教育行业。数据服务公司可以利用开放数据,帮助消费者挖掘数据的潜在价值,为企业和政府提供具有价值的商业数据。对于经营中的公司,可以利用开放数据评价商业伙伴和潜在投资,通过提供数据来树立消费者的忠诚度,学会在透明的商业社会中进行经营,寻找公共或私人合作的机会,专注自身产品和客户,为消费者提供更好的产品和服务。
二、万亿的大数据市场
2014年的GDP中消费占比已经超过了50%,标志着中国经济正在向市场经济转型,消费占GDP 50%-70%是中等发达国家向市场经济过渡的一个表现,未来中国经济增长最大的引擎应该来源于消费,特别是个人消费。中国正在经历经济结构调整和城镇化,个人消费需求巨大,社会产品较为丰富,渠道也较为通畅,物流成本正在下降,运输能力正在提高。但是社会消费零售总额增加的还不够快,资源配置不平衡,社会整体消费水平还处于较低的水平。这些问题正在成为中国经济发展的难题,是企业和社会需要解决的问题。
大数据的商业应用将会帮助企业解决这些问题;大数据的有效利用将会提高社会消费水平,将会帮住企业提高效率、洞察客户、增加收入。大数据商业应用未来是万亿级的大市场,大数据是大生意。
大数据时代最重要的特征是人类所有的行为都被数据记录下来,无论是在电商的购买行为,旅游度假,娱乐活动,行为轨迹等,所有的人类社会行为都被各种传感器和互联网记录下来。数据记录了一切,人类社会的行为都变成了数据,用纸质媒体记录人类历史的时代已经过去,历史正在被数据以文字、数据、表格、声音、影像的方式记录了下来。中国的大数据应用主要集中在征信和精准营销,这两个市场的规模加在一起不过两千亿,但是大数据如果同所有企业的商业需求相结合,其产生的化学反应将是巨大的,市场规模将会超过万亿,大数据是个大生意。
网络连接了信息与读者,阿里连接了商品与消费者,腾讯连接了人与人。BAT所有的连接都是建立在数据基础之上的,可以认为大数据连接了一切。数据连接了消费者和商家,数据连接了客户习惯,数据连接客户喜好,数据连接了位置,数据连接了时间和空间,数据连接了历史和现在。连接一切的大数据将会反馈所连接的事物、空间和时间,通过数据记录来反馈物体的移动,客户的消费习惯,个人爱好,行为习惯,活动轨迹,运动规律等。重要的这些反馈数据能知道;你是谁、你在哪里、你喜欢什么、你在干什么、你的消费能力、以及你未来的需求等。所有被反馈的事物都被打上了一个或多个数据标签,这些具有价值的标签经过整理和分析后,将会揭示事物之间的相关性和规律,将会为个人、商家、社会带来巨大价值。
1、大数据帮助制造业规划生产,降低资源浪费
制造业过去面临生产过剩的压力,很多产品包括家电、纺织产品、钢材、水泥、电解铝等都没有按照市场实际需要生产,造成了资源的极大浪费。利用电商数据、移动互联网数据、零售数据,我们可以了解未来产品市场都需求,为客户定制产品。
例如依据用户在电商搜索产品的数据以及物流数据,可以推测出家电产品和纺织产品未来的实际需求量,厂家将依据这些数据来进行生产,避免生产过剩。移动互联网的位置信息可以帮助了解当地人口进出的趋势,避免生产过多的钢材和水泥,
2、移动大数据帮助房地产开发商规划房地产开发
房地产行业在过去为中国GDP贡献了很大力量,未来粗放型的房地产行业将会转向精细化经营,从选地到规划和从设计到建设,都需要参考当地到人口数据和消费者信息,进行科学决策;利用大数据商业应用加快房子销售速度,降低自身负债。
房地产公司可以利用人群的手机位置信息来帮助企业进行开发规划、土地选址、商铺开发等。同时利用人群到用户画像信息帮助房产公司选择合作商户,提升消费人气,最终提高房产价值。
3、移动大数据帮助餐饮零售行业进行选址和顾客导流
餐饮零售行业最关注客户流量,过去开店选址时经常安排人员在十字路口进行人流统计,利用统计的人口流动信息来决定开店地址。进入到移动互联网时代之后,智能手机的位置信息可以帮助餐饮零售行业进行开店选址,企业可以参考客户画像来决定开店的规模,以及产品的类别。
移动互联网端的用户标签和画像数据还可以帮助企业进行一些精准营销,为新开的商户导入客流。特别是在规模较大的购物商厦中,移动App端的位置导航功能,可以指引客户找到新的商户,参加促销活动。市场上已经有成熟的零售餐饮商家和移动互联网大数据公司在开店引流方面进行合作,资金利用的杠杆率超过了5倍,投入产出比较高。
4、传感器数据帮助产品进行故障诊断和预测
家电和汽车正在走向智能化,通过安装传感器,汽车和智能家电可以将运行参数和运行状态传送到厂家的云平台,厂家可以了解其产品的运行状态,零部件的老化程度,帮助厂家及时更换故障器件,延长产品使用寿命,提高安全系数。汽车行业和智能家电在物联网领域将会产生巨大的市场,云计算和大数据处理平台将起到关键的作用。
中国汽车市场的销售规模超过万亿,家电市场也有一万多亿。车联网和智能家电涉及的大数据应用市场也是巨大的,按照大数据商业变现高杠杆率的特点,其市场规模至少应该在百亿左右。
5、利用移动互联网位置信息进行精准营销
O2O已经成为了一个重要的商业模式,很多互联网企业和传统企业都在寻找O2O的应用场景,订餐、教育、家政、汽车美容等都成为O2O的应用典范。移动互联网数据具有LBS和实时特点,可以帮助企业及时连接客户,依据客户需求进行精准营销。
大型购物中心一般都设有电影院,经常存在某些电影在开场前30分钟,大量电影票还没有出售的情况。借助于手机App推送广告功能,电影院在电影放映前30分钟,可以将电影票以2折价格推送给正在周围就餐的客户。依据客户画像信息,电影票将推送给喜爱看电影的顾客,增加电影销售额。企业可以利用手机App进行广告推送,做到千人千面,依据客户喜好来进行广告推送。这种精准广告推送具有成本低、转化率高的特点,在餐饮、服装、美容、零售等行业取得了良好的应用效果。如果基于位置信息的精准广告推送被大规模的商业应用,将会促进商品流转,大幅度提高社会消费总额,帮助传统企业实现互联网+的战略。
6、电商大数据将会帮助企业优化资源配置
电商是最早利用大数据进行精准营销的行业,电商网站内推荐引擎将会依据客户的购买行为,进行关联产品的推荐。除了精准营销,电商还可以依据客户消费习惯来提前为客户备货,并利用便利店作为货物中转点,在客户下单后的短时间内,将货物送上门,提高客户体验。电商还可以利用其交易数据和现金流数据,为其生态圈内的商户提供小额贷款,也可以将此数据提供给银行,为中小企业信贷提供支持。
电商的数据量足够大,数据较为集中,数据种类较多,其商业应用具有较大的想象空间。包括预测流行趋势,消费趋势、地域消费特点、客户消费习惯、消费行为的相关度、消费热点等。依托大数据分析,电商可帮助企业进行产品设计、库存管理、计划生产、资源配置等,有利于精细化大生产,提高生产效率,优化资源配置。
7、移动大数据助力交通运输规划和管理
交通大数据应用主要在两个方面,一方面可以利用大数据传感器的数据了解车辆通行密度,合理进行道路规划。另一方面可以利用大数据分析来实现交通信号灯智能切换,提高已有线路运输能力。
在美国,政府依据某一路段的交通事故信息来增设信号灯,降低了50%以上的交通事故率。大数据可以帮助机场安排航班起降,提高管理效率;航空公司可以利用大数据提高上座率,降低运行成本;铁路公司可以利用大数据安排客运和货运列车,降低运营成本。
8、大数据帮助金融行业进行价值变现
大数据在金融行业应用范围较广,典型的案例有花旗银行利用IBM沃森电脑为财富管理客户推荐产品,美国银行利用客户点击数据集为客户提供特色服务。招商银行(600036,股吧)利用客户刷卡、存取款、电子银行转帐、微信评论等行为数据进行分析,每周给客户发送针对性广告信息。
中国目前金融行业大数据价值变主要在用户体验提升和大数据营销两个方面,其中招商银行信用卡中心和平安银行(000001,股吧)走到了金融行业的前面。
大数据在很多行业都有广泛的应用场景,例如在医疗行业,农林牧渔、能源行业、物流行业等,大数据将会是电商之后的另外一个巨大市场,结合了所有行业的商业需求之后,大数据产业的市场规模将会是个万亿级别。大数据不是电力但是比电力更能提供动力,大数据不是石油,但是比石油更能驱动企业发展。大数据就是资产,能够帮助企业进行价值变现。大数据的生意经其实很简单,就是收入增加,花费减少;就是增加客户,提高客户体验,提高资金回报的杠杆率;大数据应用成熟之后,大数据可以预测商业未来,发现新的商业机会。