㈠ 数据分析有哪些软件
摘要 excel,spss,sas,jmp,xlstat,pyhton都是数据分析软件
㈡ 分析数据的软件有哪些
1、Excel
Excel作为入门级的工具,是最基础也是最主要的数据分析工具,它可以进行各种数据的处理、统计分析和辅助决策操作,数据透视图是Excel中最重要的工具,如果不考虑性能和数据量,它可以处理绝大部分的分析工作。正所谓初级学图表,中级学函数透视表,高级学习VBA。EXCEL功能的强大只有那些正真学过它的人才能知道
2、SQL
毫不夸张地说,SQL是数据方向所有岗位的必备技能,入门比较容易,概括起来就是增删改查。SQL需要掌握的知识点主要包括数据的定义语言、数据的操纵语言以及数据的控制语言;在数据的操纵语言中,理解SQL的执行顺序和语法顺序,熟练掌握SQL中的重要函数,理解SQL中各种join的异同。总而言之,要想入行数据分析,SQL是必要技能。
3、Smartbi
Smartbi是专业的BI工具,基于统一架构实现数据采集、查询、报表、自助分析、多维分析、移动分析、仪表盘、数据挖掘以及其他辅助功能,并且具有分析报告、结合AI进行语音分析等特色功能。十多年的发展历史,国产BI软件中最全面和成熟稳定的产品。广泛应用于金融、政府、电信、企事业单位等领域。完善的在线文档和教学视频,操作简便易上手。
4、Tableau
Tableau这款软件 与 Excel 的数据透视图有异曲同工之处,都是可以直接用鼠标来选择行、列标签来生成各种不同的图形图表。但Tableau的设计、色彩及操作界面给人一种简单,清新的感觉,做出来的图比 excel 的更美观。
5、SPSS
SPSS界面操作比较简单,只要认识软件基本界面和功能,准备好数据输入进行分析,软件会就自动给你算出分析结果。但要想读透SPSS给出的分析结果,需要比较扎实的统计学知识。侧重于统计分析类模型,能解决绝大部分统计学问题。
㈢ 做数据分析,比较好用的软件有哪些
虽然数据分析的工具千万种,综合起来万变不离其宗。无非是数据获取、数据存储、数据管理、数据计算、数据分析、数据展示等几个方面。而SAS、R、SPSS、python、excel是被提到频率最高的数据分析工具。
Python
Python,是一种面向对象、解释型计算机程序设计语言。Python语法简洁而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,能够把用其他语言制作的各种模块(尤其是C/C++)很轻松地联结在一起。
常见的一种应用情形是,使用Python快速生成程序的原型(有时甚至是程序的最终界面),然后对其中有特别要求的部分,用更合适的语言改写,比如3D游戏中的图形渲染模块,性能要求特别高,就可以用C/C++重写,而后封装为Python可以调用的扩展类库。需要注意的是在您使用扩展类库时可能需要考虑平台问题,某些可能不提供跨平台的实现。
R软件
R是一套完整的数据处理、计算和制图软件系统。它可以提供一些集成的统计工具,但更大量的是它提供各种数学计算、统计计算的函数,从而使使用者能灵活机动的进行数据分析,甚至创造出符合需要的新的统计计算方法。
SPSS
SPSS是世界上最早的统计分析软件,具有完整的数据输入、编辑、统计分析、报表、图形制作等功能,能够读取及输出多种格式的文件。
Excel
可以进行各种数据的处理、统计分析和辅助决策操作,广泛地应用于管理、统计财经、金融等众多领域。
SAS软件
SAS把数据存取、管理、分析和展现有机地融为一体。提供了从基本统计数的计算到各种试验设计的方差分析,相关回归分析以及多变数分析的多种统计分析过程,几乎囊括了所有最新分析方法,其分析技术先进,可靠。分析方法的实现通过过程调用完成。许多过程同时提供了多种算法和选项。
㈣ 数据分析软件技术有哪些
1. Excel工具
说起用什么做数据分析,很多人的脑海中都会不约而同地想到Python、R、SQL、Hive等看似很难掌握的数据分析工具,它们就像数据分析路上的拦路虎一样,让人踟蹰不前。
2. BI工具
BI工具是专门按照数据分析的流程进行设计的,也是专门用于数据分析的工具。仔细观察这些工具后,它们的基本流程是:数据处理-数据清洗-数据建模-数据可视化。
3. Python & R
其实不管是Excel,还是介绍的三款BI工具,它们都是为了执行特定功能,而设计出来的。如果说某一天,既定功能不能很好,或者说不能满足你的需求,那么应该怎么办呢?
这就需要我们了解,并学习一点编程语言了,最大的优势就在于:它非常强大和灵活。不管是R或者 Python,都有很多包供我们调用,同时也可以自定义函数,实现我们的某些需求。
㈤ 比较好的数据分析软件有哪些
数据分析软件有很多。只要是满足自己需求的都是最好的。大数据分析工具在数据收集、数据管理上也要有一些要求。㈥ 常见的数据分析软件有哪些
好的数据分析工具可以让数据分析事半功倍,更容易处理数据。分析一下市面上流行的四款大数据分析软件:
一、Excel
Excel使用人群众多是新手入门级数据分析工具,也是最基本的数据分析工具之一。Excel主要学习使用常用函数、快捷键操作、基本图表制作、数据透视表等。Excel具有多种强大的功能,可以满足大多数数据分析工作的需要。而且Excel提供了相当友好的操作界面,对于有基本统计理论的用户来说更容易上手。
二、SQL软件
SQL是一种数据库语言,它具有数据操作和数据定义功能,交互性强,能给用户带来很大方便。SQL专注于Select、聚合函数和条件查询。关联库是目前应用较广的数据库管理系统,技术较为成熟。这类数据库包括mysql.SQLServer.Oracle.Sybase.DB2等等。
SQL作为一种操作命令集,以其丰富的功能受到业界的广泛欢迎,成为提高数据库运行效率的保证。SQLServer数据库的应用可以有效提高数据请求和返回速度,有效处理复杂任务,是提高工作效率的关键。
三、Python软件
Python提供了能够简单有效地对对象进行编程的高级数据结构。Python语法和动态类型,以及解释性语言的本质,使它成为大多数平台上写脚本和快速开发应用的编程语言,并可用于可定制软件中的扩展程序语言。丰富的Python标准库提供了源代码或机器代码,适用于各种主要系统平台。Python有极其简单的解释文档,所以更容易上手。
四、BI工具
BI工具是商业智能(Busines Inteligence)分析工具的英文缩写。它是一个完整的大数据分析解决方案,可以有效地整合企业中现有的数据,快速准确地提供报表和帮助领导作出决策的数据依据,帮助企业做出明智的业务决策。BI工具是根据数据分析过程设计的。首先是数据处理,数据清理,然后是数据建模,最后是数据可视化,用图表识别问题,影响决策。
在思迈特软件Smartbi的例子中,Smartbi以工作流的形式为库表提取数据模型的语义,通过可视化工具来处理数据,使其成为具有语义一致性和完整性的数据模型;它也增强了自助式数据集建立数据模型的能力。该系统支持的数据预处理方法有:采样、分解、过滤与映射、列选择、空值处理、合并列、合并行、元数据编辑、线选择、重复值清除、排序等等。
它能通过表格填写实现数据采集和补录,并能对数据源进行预先整合和处理,通过简单的拖放产生各种可视图。同时,提供了丰富的图标组件,可实时显示相关信息,便于利益相关者对整个企业进行评估。
目前市场上的大数据分析软件很多,如何选择取决于企业自身的需求。因此,企业在购买数据分析软件之前,首先要了解企业数据分析的目的是什么。假如你是数据分析的新手,对需求了解不多,不妨多试试BI工具,BI工具在新手数据分析方面还是比较有优势的。
㈦ 数据处理软件有哪些
大数据分析平台是一个集成性的平台,可以将企业用户所用的数据接入,然后在该平台上进行处理,最后对得到的数据,通过各种方式进行分析展示。
大数据平台应该是集数据整合、数据处理、数据存储、数据分析、可视化、数据采集填报等功能为一体,真正帮助企业挖掘数据背后的业务逻辑,洞悉数据的蛛丝马迹,发现数据的潜在价值。亿信华辰的一站式数据分析平台ABI,就是大数据分析平台的一个典型代表。该平台融合了数据源适配、ETL数据处理、数据建模、数据分析、数据填报、工作流、门户、移动应用等核心功能。采用轻量级SOA架构设计、B/S模式,各模块间无缝集成。支持广泛的数据源接入。数据整合模块支持可视化的定义ETL过程,完成对数据的清洗、装换、处理。数据集模块支持数据库、文件、接口等多方式的数据建模。数据分析模块支持报表分析、敏捷看板、即席报告、幻灯片、酷屏、数据填报、数据挖掘等多种分析手段对数据进行分析、展现、应用。
㈧ 常用的大数据分析软件有哪些
数据分析的工具千万种,综合起来万变不离其宗。无非是数据获取、数据存储、数据管理、数据计算、数据分析、数据展示等几个方面。而SAS、R、SPSS、python、excel是被提到频率最高的数据分析工具。
㈨ 国内有哪些数据分析软件
国内较为知名的大数据分析软件是思迈特软件Smartbi。思迈特软件Smartbi作为成熟的大数据分析平台,具备可复用、 动静结合独特的展示效果,使得数据可视化灵活强大,动静皆宜,为广大用户提供了无限的应用能力和想象空间。