导航:首页 > 数据处理 > 视觉数据优化流程有哪些

视觉数据优化流程有哪些

发布时间:2022-12-26 15:51:31

① 视觉设计师如何系统的优化APP –学UI网

设计出优秀的加载方式,同时满足及时反馈、趣味性、品牌传播功能,设计师们可以通过以下几点进行优化:

大数据可视化设计到底是啥,该怎么用

大数据可视化是个热门话题,在信息安全领域,也由于很多企业希望将大数据转化为信息可视化呈现的各种形式,以便获得更深的洞察力、更好的决策力以及更强的自动化处理能力,数据可视化已经成为网络安全技术的一个重要趋势。

文章目录

        一、什么是网络安全可视化

1.1 故事+数据+设计 =可视化

1.2 可视化设计流程

二、案例一:大规模漏洞感知可视化设计

2.1整体项目分析

2.2分析数据

2.3匹配图形

2.4确定风格

2.5优化图形

2.6检查测试

三、案例二:白环境虫图可视化设计

3.1整体项目分析

3.2分析数据

3.3 匹配图形

3.4优化图形

3.5检查测试

一、什么是网络安全可视化

攻击从哪里开始?目的是哪里?哪些地方遭受的攻击最频繁……通过大数据网络安全可视化图,我们可以在几秒钟内回答这些问题,这就是可视化带给我们的效率 。 大数据网络安全的可视化不仅能让我们更容易地感知网络数据信息,快速识别风险,还能对事件进行分类,甚至对攻击趋势做出预测。可是,该怎么做呢?

1.1 故事+数据+设计 =可视化

做可视化之前,最好从一个问题开始,你为什么要做可视化,希望从中了解什么?是否在找周期性的模式?或者多个变量之间的联系?异常值?空间关系?比如政府机构,想了解全国各个行业漏洞的分布概况,以及哪个行业、哪个地区的漏洞数量最多;又如企业,想了解内部的访问情况,是否存在恶意行为,或者企业的资产情况怎么样。总之,要弄清楚你进行可视化设计的目的是什么,你想讲什么样的故事,以及你打算跟谁讲。

有了故事,还需要找到数据,并且具有对数据进行处理的能力,图1是一个可视化参考模型,它反映的是一系列的数据的转换过程:

我们有原始数据,通过对原始数据进行标准化、结构化的处理,把它们整理成数据表。

将这些数值转换成视觉结构(包括形状、位置、尺寸、值、方向、色彩、纹理等),通过视觉的方式把它表现出来。例如将高中低的风险转换成红黄蓝等色彩,数值转换成大小。

将视觉结构进行组合,把它转换成图形传递给用户,用户通过人机交互的方式进行反向转换,去更好地了解数据背后有什么问题和规律。

最后,我们还得选择一些好的可视化的方法。比如要了解关系,建议选择网状的图,或者通过距离,关系近的距离近,关系远的距离也远。

总之,有个好的故事,并且有大量的数据进行处理,加上一些设计的方法,就构成了可视化。

1.2 可视化设计流程

一个好的流程可以让我们事半功倍,可视化的设计流程主要有分析数据、匹配图形、优化图形、检查测试。首先,在了解需求的基础上分析我们要展示哪些数据,包含元数据、数据维度、查看的视角等;其次,我们利用可视化工具,根据一些已固化的图表类型快速做出各种图表;然后优化细节;最后检查测试。

具体我们通过两个案例来进行分析。

二、案例一:大规模漏洞感知可视化设计

图2是全国范围内,各个行业漏洞的分布和趋势,橙黄蓝分别代表了漏洞数量的高中低。

2.1整体项目分析

我们在拿到项目策划时,既不要被大量的信息资料所迷惑而感到茫然失措,也不要急于完成项目,不经思考就盲目进行设计。首先,让我们认真了解客户需求,并对整体内容进行关键词的提炼。可视化的核心在于对内容的提炼,内容提炼得越精确,设计出来的图形结构就越紧凑,传达的效率就越高。反之,会导致图形结构臃肿散乱,关键信息无法高效地传达给读者。

对于大规模漏洞感知的可视化项目,客户的主要需求是查看全国范围内,各个行业的漏洞分布和趋势。我们可以概括为三个关键词:漏洞量、漏洞变化、漏洞级别,这三个关键词就是我们进行数据可视化设计的核心点,整体的图形结构将围绕这三个核心点来展开布局。

2.2分析数据

想要清楚地展现数据,就要先了解所要绘制的数据,如元数据、维度、元数据间关系、数据规模等。根据需求,我们需要展现的元数据是漏洞事件,维度有地理位置、漏洞数量、时间、漏洞类别和级别,查看的视角主要是宏观和关联。涉及到的视觉元素有形状、色彩、尺寸、位置、方向,如图4。

2.3匹配图形

2.4确定风格

匹配图形的同时,还要考虑展示的平台。由于客户是投放在大屏幕上查看,我们对大屏幕的特点进行了分析,比如面积巨大、深色背景、不可操作等。依据大屏幕的特点,我们对设计风格进行了头脑风暴:它是实时的,有紧张感;需要新颖的图标和动效,有科技感;信息层次是丰富的;展示的数据是权威的。

最后根据设计风格进一步确定了深蓝为标准色,代表科技与创新;橙红蓝分别代表漏洞数量的高中低,为辅助色;整体的视觉风格与目前主流的扁平化一致。

2.5优化图形

有了图形后,尝试把数据按属性绘制到各维度上,不断调整直到合理。虽然这里说的很简单,但这是最耗时耗力的阶段。维度过多时,在信息架构上广而浅或窄而深都是需要琢磨的,而后再加上交互导航,使图形更“可视”。

在这个任务中,图形经过很多次修改,图7是我们设计的过程稿,深底,高亮的地图,多颜色的攻击动画特效,营造紧张感;地图中用红、黄、蓝来呈现高、中、低危的漏洞数量分布情况;心理学认为上方和左方易重视,“从上到下”“从左至右”的“Z”字型的视觉呈现,简洁清晰,重点突出。

完成初稿后,我们进一步优化了维度、动效和数量。维度:每个维度,只用一种表现,清晰易懂;动效:考虑时间和情感的把控,从原来的1.5ms改为3.5ms;数量:考虑了太密或太疏时用户的感受,对圆的半径做了统一大小的处理。

2.6检查测试

最后还需要检查测试,从头到尾过一遍是否满足需求;实地投放大屏幕后,用户是否方便阅读;动效能否达到预期,色差是否能接受;最后我们用一句话描述大屏,用户能否理解。

三、案例二:白环境虫图可视化设计

如果手上只有单纯的电子表格(左),要想找到其中IP、应用和端口的访问模式就会很花时间,而用虫图(右)呈现之后,虽然增加了很多数据,但读者的理解程度反而提高了。

3.1整体项目分析

当前,企业内部IT系统复杂多变,存在一些无法精细化控制的、非法恶意的行为,如何精准地处理安全管理问题呢?我们的主要目标是帮助用户监测访问内网核心服务器的异常流量,概括为2个关键词:内网资产和访问关系,整体的图形结构将围绕这两个核心点来展开布局。

3.2分析数据

接下来分析数据,案例中的元数据是事件,维度有时间、源IP、目的IP和应用,查看的视角主要是关联和微观。

3.3 匹配图形

根据以往的经验,带有关系的数据一般使用和弦图和力导向布局图。最初我们采用的是和弦图,圆点内部是主机,用户要通过3个维度去寻找事件的关联。通过测试发现,用户很难理解,因此选择了力导向布局图(虫图)。第一层级展示全局关系,第二层级通过对IP或端口的钻取进一步展现相关性。

3.4优化图形

优化图形时,我们对很多细节进行了调整: – 考虑太密或太疏时用户的感受,只展示了TOP N。 – 弧度、配色的优化,与我们UI界面风格相一致。 – IP名称超长时省略处理。 – 微观视角中,源和目的分别以蓝色和紫色区分,同时在线上增加箭头,箭头向内为源,向外是目的,方便用户理解。 – 交互上,通过单击钻取到单个端口和IP的信息;鼠标滑过时相关信息高亮展示,这样既能让画面更加炫酷,又能让人方便地识别。

3.5检查测试

通过调研,用户对企业内部的流向非常清楚,视觉导向清晰,钻取信息方便,色彩、动效等细节的优化帮助用户快速定位问题,提升了安全运维效率。

四、总结

总之,借助大数据网络安全的可视化设计,人们能够更加智能地洞悉信息与网络安全的态势,更加主动、弹性地去应对新型复杂的威胁和未知多变的风险。

可视化设计的过程中,我们还需要注意:1、整体考虑、顾全大局;2、细节的匹配、一致性;3、充满美感,对称和谐。

③ 直通车推广中进行商品图像的视觉优化要注意哪几个方面

(1)定位要准确。直通车的图片视觉优化最重要的部分是商品首图,它是消费者了解商品最初的地方,也是推广商品的唯一入口。所以这个商品图片的设计有很多的要求。

首先,根据直通车的投放计划确定直通车商品推广所投放的位置(第几页,第几个商品),方便对周边商品进行分析,从而在设计上更为突出,更容易让消费者注意。

其次,确定推广的商品所针对的消费群体,同时分析消费者的喜好,来确定设计风格及颜色,分析消费者的消费能力,来确定使用什么样的促销方式是消费者最容易接受的,以及分析消费者的生活习惯,方便调整投放时间和策略,与竞争者拉开差异,增加投放效率。

(2)要突出商品的主体,弱化背景。在设计时合理选择背景颜色,或者在拍摄中尽量使用与商品本身色彩差异较大的背景颜色,背景颜色尽量简单,切勿太杂太乱,否则会影响商品主体图像在直通车图片中的主导地位。如果是必须使用的颜色,可以把直通车图片的背景做适当的模糊效果,以突出商品主体。

(3)主次要分明。商品主体一般要占据整个直通车图片的三分之二左右,消费者就会自动根据图片中的对象的比例关系去区分商品,避免造成消费者误解。同时,要保证商品不能被任何素材及文字覆盖,保证图片与素材或文字的间距至少为10像素。

(4)要保证图片的清晰度,作为直通车推广的图片,清晰度是最为重要的。

在图片设计的时候,要注意较暗的图片可以用色阶调亮,模糊的图片可以适当锐化,让它变得更清晰。在缩放商品图片时,商品图像会相应变得模糊,因此在缩小商品后可以适当进行锐化处理,但是,缩小了的图片不能再放大使用,因为会影响图片的精度。

(5)图文排版要做到整齐统一,整齐与统一缺一不可。整齐即所有文字左或中或右对齐。所谓统一,就是字体、样式、颜色、大小、行距、字间距等统一,对于其中重点信息可以通过改变字体大小或颜色来体现主次。要尽可能减少首图上的文字信息,以展示图片为主。对于商品展示文案的具体内容,必须分析商品及受众消费群体,提炼出最精髓的信息予以展示,比如功能类产品以展示功效为主、对于普通工薪消费人群以展示优惠折扣为主、对于优势突出的商品以展示优势为主,同时也可以考虑给消费者更多的选择空间,切勿盲目展示,否则得不偿失。

④ 流程优化的步骤

1、流程评估
本阶段的主要功能是评估、分析、发现现有业务流程存在的问题和不足,实现途径包括绩效评价、事故检讨、客户反馈、检查控制和学习研究等。
(1)绩效评价:根据企业、部门的目标绩效完成情况,分析评估相关业务流程的质量和运作状况。
(2)事故检讨:企业运营过程中发生较严重的事故时,应分析评估相关业务流程的质量和运作状况。
(3)客户反馈:流程客户(包括直接、间接客户和内部、外部客户)通过投诉、抱怨、调查反馈、消极反应等方式传递意见时,应分析评估相关业务流程的质量和运作状况。
(4)检查控制:主动性地对相关业务流程的运作状况进行定期或不定期的检查以及管理部门在行使审核程序时,都可以分析评估业务流程的质量和运作状况。
(5)学习研究:组织和个人在主动的学习过程中,以及在做标杆研究时,都可以对业务流程的质量和运作状况进行分析评估。
2、流程分析
本阶段的主要功能是分析流程评估中发现的问题和改善机会,为后一步的改进行动提供指引,分析内容包括性质分析、原因分析、干系分析和实施分析。
(1)性质分析:对流程评估中发现问题影响面和严重性进行分析,判断其类别和性质。
(2)原因分析:分析探寻问题产生的原因机理和影响因素
(3)干系分析:分析存在问题及潜在的解决方案影响、涉及到哪些关联方,对这些关联方影响的程度及其可能的配合程度如何等。
(4)实施分析:分析对发现问题进行优化改进的必要性、可能性、时间性和是否涉及关联流程的同步优化,即回答是否有必要改进、是否能改进、是否现在改进、是否需要和关联流程同时改进几个问题。
3、流程改进
本阶段主要功能是在上述分析基础上,对现有业务流程当中发现的问题展开修改、补充、调整等改进工作,研究方法包括访谈法、头脑风暴法、德尔菲法以及标杆学习法。
(1)访谈法:与流程关联方进行直接的、开放式的当面深度交流,获取有益信息和解决建议。关联方包括业务流程的客户、供应商、生产者和管理方等。
(2)头脑风暴法:由包括流程优化人员和关联方人员在内的群体,采用头脑风暴法集思广益、群策群力、互启互动,获取开创性的解决建议。
(3)德尔菲法:选择相关专业人士,通过独立的专家意见表述和背对背辩论,获取专业性的独立解决方案。
(4)标杆学习法:寻找和研究同行业或跨行业一流企业的最佳实践,通过比较、分析和判断,寻求自身改进的可行性方案。
4、流程实施
本阶段的主要功能是在对业务流程修订改进后,付诸于实际操作运行,主要实施步骤有签署发布、宣传培训、现场指导和检查控制。
(1)签署发布:对改进后的新流程完成审批后予以确认发布。
(2)宣传培训:实际上是新流程在企业内部的营销推广,使相关各方理解、接受并实际操作使用新流程。
(3)现场指导:通过深入现场亲自监督、检查、指导以保障新流程的正确实施。
(4)检查控制:对新流程试运行过程中执行情况和实施效果进行检查、监督、纠正,评估流程改进效果,如出现异常及时组织调整;试运行成熟后使之在操作中成型固化

⑤ 视觉体验的优化策略是什么

视觉在人类的感觉系统中占核心地位,甚至可以遮蔽其他感觉通道,因此它成为一种影响消费者行为的重要先决因素。电子商务的兴起改变了人们的生活,“逛网店”不仅是一种消费方式,也成了一种休闲方式。网店凭借精致的装修、缤纷有序的商品、周全的细节展示,通过强烈的视觉冲击唤起顾客的购买欲望,已演化为一种新型的市场营销手段———视觉营销。网店的视觉体验优化需重点关注店招、首页和宝贝详情描述。店招就是网店最上面的横幅,作为顾客进入网店后视觉的焦点,是店铺文化的浓缩,直接决定了店铺在其心中的第一印象。精致简约、别具创意的店招将大大增加客户继续停留在网店里浏览、选择商品的可能性。店招设置时需遵循两大原则:一是简单明了,将主营商品用文字、图像明确地告知给顾客;二是和谐美观,店招要与网店的整体风格统一,图文搭配要合理,色彩渲染与商品类别、品性要和谐,如婚庆商品用大红渲染,健康食品用绿色渲染,传递网店主打商品的特色。店铺首页作为一个店铺形象展示窗口,直接影响到店铺品牌宣传以及买家的购物体验及转化率。首页的布局需掌握三个要点:一是重点突出,在视觉热点集中的页头位置布局主款、新品、热卖等营销重点产品,并以强有力的视觉冲击抓住消费者眼球;二是陈列有序,在有限的首页空间进行产品的合理陈列,既追求视觉的价值塑造,又致力于最高效的空间功能规划,建议商品陈列采用符合消费者浏览网页的F形眼球轨迹;三是流畅贯通,在店铺橱窗或者重点推介产品之后可加上一定逻辑的产品分类导航,引导买家用最快的时间找到其所需要的商品。宝贝详情页作为很多流量的入口以及客户确定最终购买页面,地位非同小可。网上购物与实体购物相比,是一个更漫长的过程,客户可以精挑细选,全面比较,在这个时候会变得相对理性。此时宝贝描述页面作为“静态推销员”,起到了传达商品细节、质量、使用感觉等的重要作用。详情页设计应该做到逻辑清晰、表述准确、细致到位、排版整体风格一致、浑然天成、赏心悦目,让顾客充分感受到浏览乐趣。详情页需展示商品多角度拍摄效果,让顾客能够全方位地了解商品的外观,针对商品局部的一些有特点的元素应进行突出特写。另外,商品的规格参数模块是用户判断商品整体感觉的主要方式之一,应以整齐的版面设计展现。

⑥ 数据查询优化的方法都有哪些

1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where 子句中对字段进行 null 值判断,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num is null
可以在num上设置默认值0,确保表中num列没有null值,然后这样查询:
select id from t where num=0
3.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索引而进行全表扫描。
4.应尽量避免在 where 子句中使用 or 来连接条件,否则将导致引擎放弃使用索引而进行全表扫描,如:
select id from t where num=10 or num=20
可以这样查询:
select id from t where num=10
union all
select id from t where num=20
5.in 和 not in 也要慎用,否则会导致全表扫描,如:
select id from t where num in(1,2,3)
对于连续的数值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
6.下面的查询也将导致全表扫描:
select id from t where name like '%abc%'
若要提高效率,可以考虑全文检索。
7.如果在 where 子句中使用参数,也会导致全表扫描。因为SQL只有在运行时才会解析局部变量,但优化程序不能将访问计划的选择推迟到运行时;它必须在编译时进行选择。然而,如果在编译时建立访问计划,变量的值还是未知的,因而无法作为索引选择的输入项。如下面语句将进行全表扫描:
select id from t wherenum=@num
可以改为强制查询使用索引:
select id from t with(index(索引名)) wherenum= @num
8.应尽量避免在 where 子句中对字段进行表达式操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where num/2=100
应改为:
select id from t where num=100*2
9.应尽量避免在where子句中对字段进行函数操作,这将导致引擎放弃使用索引而进行全表扫描。如:
select id from t where substring(name,1,3)='abc'--name以abc开头的id
select id from t where datediff(day,createdate,'2005-11-30')=0--‘2005-11-30’生成的id

⑦ 谁知道数据库优化设计方案有哪些

本文首先讨论了基于第三范式的数据库表的基本设计,着重论述了建立主键和索引的策略和方案,然后从数据库表的扩展设计和库表对象的放置等角度概述了数据库管理系统的优化方案。
关键词: 优化(Optimizing) 第三范式(3NF) 冗余数据(Rendant Data) 索引(Index) 数据分割(Data Partitioning) 对象放置(Object Placement)
1 引言
数据库优化的目标无非是避免磁盘I/O瓶颈、减少CPU利用率和减少资源竞争。为了便于读者阅读和理解,笔者参阅了Sybase、Informix和Oracle等大型数据库系统参考资料,基于多年的工程实践经验,从基本表设计、扩展设计和数据库表对象放置等角度进行讨论,着重讨论了如何避免磁盘I/O瓶颈和减少资源竞争,相信读者会一目了然。
2 基于第三范式的基本表设计
在基于表驱动的信息管理系统(MIS)中,基本表的设计规范是第三范式(3NF)。第三范式的基本特征是非主键属性只依赖于主键属性。基于第三范式的数据库表设计具有很多优点:一是消除了冗余数据,节省了磁盘存储空间;二是有良好的数据完整性限制,即基于主外键的参照完整限制和基于主键的实体完整性限制,这使得数据容易维护,也容易移植和更新;三是数据的可逆性好,在做连接(Join)查询或者合并表时不遗漏、也不重复;四是因消除了冗余数据(冗余列),在查询(Select)时每个数据页存的数据行就多,这样就有效地减少了逻辑I/O,每个Cash存的页面就多,也减少物理I/O;五是对大多数事务(Transaction)而言,运行性能好;六是物理设计(Physical Design)的机动性较大,能满足日益增长的用户需求。
在基本表设计中,表的主键、外键、索引设计占有非常重要的地位,但系统设计人员往往只注重于满足用户要求,而没有从系统优化的高度来认识和重视它们。实际上,它们与系统的运行性能密切相关。现在从系统数据库优化角度讨论这些基本概念及其重要意义:
(1)主键(Primary Key):主键被用于复杂的SQL语句时,频繁地在数据访问中被用到。一个表只有一个主键。主键应该有固定值(不能为Null或缺省值,要有相对稳定性),不含代码信息,易访问。把常用(众所周知)的列作为主键才有意义。短主键最佳(小于25bytes),主键的长短影响索引的大小,索引的大小影响索引页的大小,从而影响磁盘I/O。主键分为自然主键和人为主键。自然主键由实体的属性构成,自然主键可以是复合性的,在形成复合主键时,主键列不能太多,复合主键使得Join*作复杂化、也增加了外键表的大小。人为主键是,在没有合适的自然属性键、或自然属性复杂或灵敏度高时,人为形成的。人为主键一般是整型值(满足最小化要求),没有实际意义,也略微增加了表的大小;但减少了把它作为外键的表的大小。
(2)外键(Foreign Key):外键的作用是建立关系型数据库中表之间的关系(参照完整性),主键只能从独立的实体迁移到非独立的实体,成为后者的一个属性,被称为外键。
(3)索引(Index):利用索引优化系统性能是显而易见的,对所有常用于查询中的Where子句的列和所有用于排序的列创建索引,可以避免整表扫描或访问,在不改变表的物理结构的情况下,直接访问特定的数据列,这样减少数据存取时间;利用索引可以优化或排除耗时的分类*作;把数据分散到不同的页面上,就分散了插入的数据;主键自动建立了唯一索引,因此唯一索引也能确保数据的唯一性(即实体完整性);索引码越小,定位就越直接;新建的索引效能最好,因此定期更新索引非常必要。索引也有代价:有空间开销,建立它也要花费时间,在进行Insert、Delete和Update*作时,也有维护代价。索引有两种:聚族索引和非聚族索引。一个表只能有一个聚族索引,可有多个非聚族索引。使用聚族索引查询数据要比使用非聚族索引快。在建索引前,应利用数据库系统函数估算索引的大小。
① 聚族索引(Clustered Index):聚族索引的数据页按物理有序储存,占用空间小。选择策略是,被用于Where子句的列:包括范围查询、模糊查询或高度重复的列(连续磁盘扫描);被用于连接Join*作的列;被用于Order by和Group by子句的列。聚族索引不利于插入*作,另外没有必要用主键建聚族索引。
② 非聚族索引(Nonclustered Index):与聚族索引相比,占用空间大,而且效率低。选择策略是,被用于Where子句的列:包括范围查询、模糊查询(在没有聚族索引时)、主键或外键列、点(指针类)或小范围(返回的结果域小于整表数据的20%)查询;被用于连接Join*作的列、主键列(范围查询);被用于Order by和Group by子句的列;需要被覆盖的列。对只读表建多个非聚族索引有利。索引也有其弊端,一是创建索引要耗费时间,二是索引要占有大量磁盘空间,三是增加了维护代价(在修改带索引的数据列时索引会减缓修改速度)。那么,在哪种情况下不建索引呢?对于小表(数据小于5页)、小到中表(不直接访问单行数据或结果集不用排序)、单值域(返回值密集)、索引列值太长(大于20bitys)、容易变化的列、高度重复的列、Null值列,对没有被用于Where子语句和Join查询的列都不能建索引。另外,对主要用于数据录入的,尽可能少建索引。当然,也要防止建立无效索引,当Where语句中多于5个条件时,维护索引的开销大于索引的效益,这时,建立临时表存储有关数据更有效。
批量导入数据时的注意事项:在实际应用中,大批量的计算(如电信话单计费)用C语言程序做,这种基于主外键关系数据计算而得的批量数据(文本文件),可利用系统的自身功能函数(如Sybase的BCP命令)快速批量导入,在导入数据库表时,可先删除相应库表的索引,这有利于加快导入速度,减少导入时间。在导入后再重建索引以便优化查询。
(4)锁:锁是并行处理的重要机制,能保持数据并发的一致性,即按事务进行处理;系统利用锁,保证数据完整性。因此,我们避免不了死锁,但在设计时可以充分考虑如何避免长事务,减少排它锁时间,减少在事务中与用户的交互,杜绝让用户控制事务的长短;要避免批量数据同时执行,尤其是耗时并用到相同的数据表。锁的征用:一个表同时只能有一个排它锁,一个用户用时,其它用户在等待。若用户数增加,则Server的性能下降,出现“假死”现象。如何避免死锁呢?从页级锁到行级锁,减少了锁征用;给小表增加无效记录,从页级锁到行级锁没有影响,若在同一页内竞争有影响,可选择合适的聚族索引把数据分配到不同的页面;创建冗余表;保持事务简短;同一批处理应该没有网络交互。
(5)查询优化规则:在访问数据库表的数据(Access Data)时,要尽可能避免排序(Sort)、连接(Join)和相关子查询*作。经验告诉我们,在优化查询时,必须做到:
① 尽可能少的行;
② 避免排序或为尽可能少的行排序,若要做大量数据排序,最好将相关数据放在临时表中*作;用简单的键(列)排序,如整型或短字符串排序;
③ 避免表内的相关子查询;
④ 避免在Where子句中使用复杂的表达式或非起始的子字符串、用长字符串连接;
⑤ 在Where子句中多使用“与”(And)连接,少使用“或”(Or)连接;
⑥ 利用临时数据库。在查询多表、有多个连接、查询复杂、数据要过滤时,可以建临时表(索引)以减少I/O。但缺点是增加了空间开销。
除非每个列都有索引支持,否则在有连接的查询时分别找出两个动态索引,放在工作表中重新排序。
3 基本表扩展设计
基于第三范式设计的库表虽然有其优越性(见本文第一部分),然而在实际应用中有时不利于系统运行性能的优化:如需要部分数据时而要扫描整表,许多过程同时竞争同一数据,反复用相同行计算相同的结果,过程从多表获取数据时引发大量的连接*作,当数据来源于多表时的连接*作;这都消耗了磁盘I/O和CPU时间。
尤其在遇到下列情形时,我们要对基本表进行扩展设计:许多过程要频繁访问一个表、子集数据访问、重复计算和冗余数据,有时用户要求一些过程优先或低的响应时间。
如何避免这些不利因素呢?根据访问的频繁程度对相关表进行分割处理、存储冗余数据、存储衍生列、合并相关表处理,这些都是克服这些不利因素和优化系统运行的有效途径。
3.1 分割表或储存冗余数据
分割表分为水平分割表和垂直分割表两种。分割表增加了维护数据完整性的代价。
水平分割表:一种是当多个过程频繁访问数据表的不同行时,水平分割表,并消除新表中的冗余数据列;若个别过程要访问整个数据,则要用连接*作,这也无妨分割表;典型案例是电信话单按月分割存放。另一种是当主要过程要重复访问部分行时,最好将被重复访问的这些行单独形成子集表(冗余储存),这在不考虑磁盘空间开销时显得十分重要;但在分割表以后,增加了维护难度,要用触发器立即更新、或存储过程或应用代码批量更新,这也会增加额外的磁盘I/O开销。
垂直分割表(不破坏第三范式),一种是当多个过程频繁访问表的不同列时,可将表垂直分成几个表,减少磁盘I/O(每行的数据列少,每页存的数据行就多,相应占用的页就少),更新时不必考虑锁,没有冗余数据。缺点是要在插入或删除数据时要考虑数据的完整性,用存储过程维护。另一种是当主要过程反复访问部分列时,最好将这部分被频繁访问的列数据单独存为一个子集表(冗余储存),这在不考虑磁盘空间开销时显得十分重要;但这增加了重叠列的维护难度,要用触发器立即更新、或存储过程或应用代码批量更新,这也会增加额外的磁盘I/O开销。垂直分割表可以达到最大化利用Cache的目的。
总之,为主要过程分割表的方法适用于:各个过程需要表的不联结的子集,各个过程需要表的子集,访问频率高的主要过程不需要整表。在主要的、频繁访问的主表需要表的子集而其它主要频繁访问的过程需要整表时则产生冗余子集表。
注意,在分割表以后,要考虑重新建立索引。
3.2 存储衍生数据
对一些要做大量重复性计算的过程而言,若重复计算过程得到的结果相同(源列数据稳定,因此计算结果也不变),或计算牵扯多行数据需额外的磁盘I/O开销,或计算复杂需要大量的CPU时间,就考虑存储计算结果(冗余储存)。现予以分类说明:
若在一行内重复计算,就在表内增加列存储结果。但若参与计算的列被更新时,必须要用触发器更新这个新列。
若对表按类进行重复计算,就增加新表(一般而言,存放类和结果两列就可以了)存储相关结果。但若参与计算的列被更新时,就必须要用触发器立即更新、或存储过程或应用代码批量更新这个新表。
若对多行进行重复性计算(如排名次),就在表内增加列存储结果。但若参与计算的列被更新时,必须要用触发器或存储过程更新这个新列。
总之,存储冗余数据有利于加快访问速度;但违反了第三范式,这会增加维护数据完整性的代价,必须用触发器立即更新、或存储过程或应用代码批量更新,以维护数据的完整性。
3.3 消除昂贵结合
对于频繁同时访问多表的一些主要过程,考虑在主表内存储冗余数据,即存储冗余列或衍生列(它不依赖于主键),但破坏了第三范式,也增加了维护难度。在源表的相关列发生变化时,必须要用触发器或存储过程更新这个冗余列。当主要过程总同时访问两个表时可以合并表,这样可以减少磁盘I/O*作,但破坏了第三范式,也增加了维护难度。对父子表和1:1关系表合并方法不同:合并父子表后,产生冗余表;合并1:1关系表后,在表内产生冗余数据。
4 数据库对象的放置策略
数据库对象的放置策略是均匀地把数据分布在系统的磁盘中,平衡I/O访问,避免I/O瓶颈。
⑴ 访问分散到不同的磁盘,即使用户数据尽可能跨越多个设备,多个I/O运转,避免I/O竞争,克服访问瓶颈;分别放置随机访问和连续访问数据。
⑵ 分离系统数据库I/O和应用数据库I/O。把系统审计表和临时库表放在不忙的磁盘上。
⑶ 把事务日志放在单独的磁盘上,减少磁盘I/O开销,这还有利于在障碍后恢复,提高了系统的安全性。
⑷ 把频繁访问的“活性”表放在不同的磁盘上;把频繁用的表、频繁做Join*作的表分别放在单独的磁盘上,甚至把把频繁访问的表的字段放在不同的磁盘上,把访问分散到不同的磁盘上,避免I/O争夺;
⑸ 利用段分离频繁访问的表及其索引(非聚族的)、分离文本和图像数据。段的目的是平衡I/O,避免瓶颈,增加吞吐量,实现并行扫描,提高并发度,最大化磁盘的吞吐量。利用逻辑段功能,分别放置“活性”表及其非聚族索引以平衡I/O。当然最好利用系统的默认段。另外,利用段可以使备份和恢复数据更加灵活,使系统授权更加灵活。

⑧ 板面设计中的视觉流程是什么有哪些流程形式设计视觉流程的导读应注意哪些问题

版面设计的视觉流程是一种“视觉空间的运动”,是版面空间的各元素引导视线阅读的运动进程。

视觉流程有7种形式:1单向视觉流程。2曲线视觉流程。3重心的视觉流程。4反复的视觉流程。5导向的视觉流程。6散构的视觉流程。7最佳视域。
设计视觉流程的导读应注意;理性与感性、方向关系的流程与散构关系的流程。方向关系的流程强调逻辑,注重版面清晰的脉络,似乎有一条贯穿版面,使整个版面的运动趋势有“主题旋律”,细节与主题犹如树干树枝一样和谐,方向关系流程较散构关系的流程更具理想色彩。

⑨ 数据可视化的基本流程

作者 | 向倩文

来源 | 数据产品手记

大多数人对数据可视化的第一印象,可能就是各种图形,比如Excel图表模块中的柱状图、条形图、折线图、饼图、散点图等等,就不一一列举了。以上所述,只是数据可视化的具体体现,但是数据可视化却不止于此。

数据可视化不是简单的视觉映射,而是一个以数据流向为主线的一个完整流程,主要包括数据采集、数据处理和变换、可视化映射、用户交互和用户感知。一个完整的可视化过程,可以看成数据流经过一系列处理模块并得到转化的过程,用户通过可视化交互从可视化映射后的结果中获取知识和灵感。

图1 可视化的基本流程图

可视化主流程的各模块之间,并不仅仅是单纯的线性连接,而是任意两个模块之间都存在联系。例如,数据采集、数据处理和变换、可视化编码和人机交互方式的不同,都会产生新的可视化结果,用户通过对新的可视化结果的感知,从而又会有新的知识和灵感的产生。

下面,对数据可视化主流程中的几个关键步骤进行说明。


01

数据采集

数据采集是数据分析和可视化的第一步,俗话说“巧妇难为无米之炊”,数据采集的方法和质量,很大程度上就决定了数据可视化的最终效果。

数据采集的分类方法有很多,从数据的来源来看,可以分为内部数据采集和外部数据采集。

1.内部数据采集:

指的是采集企业内部经营活动的数据,通常数据来源于业务数据库,如订单的交易情况。如果要分析用户的行为数据、APP的使用情况,还需要一部分行为日志数据,这个时候就需要用“埋点”这种方法来进行APP或Web的数据采集。

2.外部数据采集:

指的数通过一些方法获取企业外部的一些数据,具体目的包括,获取竞品的数据、获取官方机构官网公布的一些行业数据等。获取外部数据,通常采用的数据采集方法为“网络爬虫”。

以上的两类数据采集方法得来的数据,都是二手数据。通过调查和实验采集数据,属于一手数据,在市场调研和科学研究实验中比较常用,不在此次探讨范围之内。


02

数据处理和变换

数据处理和数据变换,是进行数据可视化的前提条件,包括数据预处理和数据挖掘两个过程。

一方面,通过前期的数据采集得到的数据,不可避免的含有噪声和误差,数据质量较低;另一方面,数据的特征、模式往往隐藏在海量的数据中,需要进一步的数据挖掘才能提取出来。

常见的数据质量问题包括:

1.数据收集错误,遗漏了数据对象,或者包含了本不应包含的其他数据对象。

2.数据中的离群点,即不同于数据集中其他大部分数据对象特征的数据对象。

3.存在遗漏值,数据对象的一个或多个属性值缺失,导致数据收集不全。

4.数据不一致,收集到的数据明显不合常理,或者多个属性值之间互相矛盾。例如,体重是负数,或者所填的邮政编码和城市之间并没有对应关系。

5.重复值的存在,数据集中包含完全重复或几乎重复的数据。

正是因为有以上问题的存在,直接拿采集的数据进行分析or可视化,得出的结论往往会误导用户做出错误的决策。因此,对采集到的原始数据进行数据清洗和规范化,是数据可视化流程中不可缺少的一环。

数据可视化的显示空间通常是二维的,比如电脑屏幕、大屏显示器等,3D图形绘制技术解决了在二维平面显示三维物体的问题。

但是在大数据时代,我们所采集到的数据通常具有4V特性:Volume(大量)、Variety(多样)、Velocity(高速)、Value(价值)。如何从高维、海量、多样化的数据中,挖掘有价值的信息来支持决策,除了需要对数据进行清洗、去除噪声之外,还需要依据业务目的对数据进行二次处理。

常用的数据处理方法包括:降维、数据聚类和切分、抽样等统计学和机器学习中的方法。


03

可视化映射

对数据进行清洗、去噪,并按照业务目的进行数据处理之后,接下来就到了可视化映射环节。可视化映射是整个数据可视化流程的核心,是指将处理后的数据信息映射成可视化元素的过程。

可视化元素由3部分组成:可视化空间+标记+视觉通道

1.可视化空间

数据可视化的显示空间,通常是二维。三维物体的可视化,通过图形绘制技术,解决了在二维平面显示的问题,如3D环形图、3D地图等。

图2 可视化空间示例

2.标记

标记,是数据属性到可视化几何图形元素的映射,用来代表数据属性的归类。

根据空间自由度的差别,标记可以分为点、线、面、体,分别具有零自由度、一维、二维、三维自由度。如我们常见的散点图、折线图、矩形树图、三维柱状图,分别采用了点、线、面、体这四种不同类型的标记。

图3 标记类型示例

3.视觉通道

数据属性的值到标记的视觉呈现参数的映射,叫做视觉通道,通常用于展示数据属性的定量信息。

常用的视觉通道包括:标记的位置、大小(长度、面积、体积...)、形状(三角形、圆、立方体...)、方向、颜色(色调、饱和度、亮度、透明度...)等。

图3中的四个图形示例,就很好的利用了位置、大小、颜色等视觉通道来进行数据信息的可视化呈现。

“标记”、“视觉通道”是可视化编码元素的两个方面,两者的结合,可以完整的将数据信息进行可视化表达,从而完成可视化映射这一过程。

关于可视化编码元素的优先级,以及如何根据数据的特征选择合适的可视化表达,下次会专题来分享下。


04

人机交互

可视化的目的,是为了反映数据的数值、特征和模式,以更加直观、易于理解的方式,将数据背后的信息呈现给目标用户,辅助其作出正确的决策。

但是通常,我们面对的数据是复杂的,数据所蕴含的信息是丰富的。

如果在可视化图形中,将所有的信息不经过组织和筛选,全部机械的摆放出来,不仅会让整个页面显得特别臃肿和混乱,缺乏美感;而且模糊了重点,分散用户的注意力,降低用户单位时间获取信息的能力。

常见的交互方式包括:

1.滚动和缩放:当数据在当前分辨率的设备上无法完整展示时,滚动和缩放是一种非常有效的交互方式,比如地图、折线图的信息细节等。但是,滚动与缩放的具体效果,除了与页面布局有关系外,还与具体的显示设备有关。

2.颜色映射的控制:一些可视化的开源工具,会提供调色板,如D3。用户可以根据自己的喜好,去进行可视化图形颜色的配置。这个在自助分析等平台型工具中,会相对多一点,但是对一些自研的可视化产品中,一般有专业的设计师来负责这项工作,从而使可视化的视觉传达具有美感。

3.数据映射方式的控制:这个是指用户对数据可视化映射元素的选择,一般一个数据集,是具有多组特征的,提供灵活的数据映射方式给用户,可以方便用户按照自己感兴趣的维度去探索数据背后的信息。这个在常用的可视化分析工具中都有提供,如tableau、PowerBI等。

4.数据细节层次控制:比如隐藏数据细节,hover或点击才出现。


05

用户感知

可视化的结果,只有被用户感知之后,才可以转化为知识和灵感。

用户在感知过程,除了被动接受可视化的图形之外,还通过与可视化各模块之间的交互,主动获取信息。

如何让用户更好的感知可视化的结果,将结果转化为有价值的信息用来指导决策,这个里面涉及到的影响因素太多了,心理学、统计学、人机交互等多个学科的知识。

学习之路漫漫,一直在路上, 我们会持续分享数据可视化领域的知识,记得持续follow我们哟!

⑩ 平面广告设计的视觉流程有几种形式,其特征是什么

平面广告设计的视觉流程有水平,垂直,斜向,曲线,核心,导示、反复,散点等八种形式(因各教材不同,可能名字不一样,大体上是就这么几种的)
水平视觉流程具有温和安定、静止的视觉感受,可以使整个版面产生稳定、静态的视觉效果。
垂直视觉流程是指将版面中的视觉元素按垂直方向进行排列,这种从上到下的方式给人坚定、直率、理性、庄重的视觉感受。随着视觉的上下移动,能表现出一种力的美感。
斜向视觉流程是指将版面中的视觉元素按斜向进行排列,这种排列方式给人以飞跃、冲刺、前进的视觉感受,表现出力量与重心的前移。斜向视觉流程具有强烈的冲击力,能以其不稳定的动态视觉感受,吸引人们的目光。
曲线视觉流程是指将版面中的视觉元素按曲线进行排列,这种排列方式给人一种柔美,优雅的视觉感受。曲线视觉流程虽不如水平,垂直视觉流程那样直接简明,但它更具有韵味、节奏和动态美,能够营造出轻松舒展的气氛。
核心视觉流程是指在版面中选择一处位置进行重点信息的传达,也就是一个图形、文字或色彩形象占据版面的核心位置,产生强烈的视觉效果。根据版面的不同,视觉核心位置也是不同的。根据广告所要表达的含义来决定视觉核心的位置,能够鲜明地突出主题。其他的现在在工作,有空在写吧

阅读全文

与视觉数据优化流程有哪些相关的资料

热点内容
成熟的男人和程序员应该选哪个 浏览:587
信息量是怎么算 浏览:778
大数据什么是绩效考核 浏览:622
旅游优惠信息哪里看 浏览:600
高速倒车多久会收到信息 浏览:401
杭州联通信息中心电话是多少 浏览:356
电力系统单机信息上传是怎么工作 浏览:68
东凤最大的市场是哪个 浏览:97
杭州地铁技术管理人员待遇怎么样 浏览:176
工厂合资技术分多少 浏览:986
罗马交易所的币是哪里来的 浏览:343
为什么交易猫发货了没反应 浏览:768
哪些渠道可以获取到新店信息 浏览:280
系统技术升级中请稍后登录什么意思 浏览:334
产权转让怎么交易 浏览:754
如何看懂产品的分析 浏览:958
如何把手薄数据做成表格 浏览:934
数据分析设计需要什么软件 浏览:80
小程序中wps编辑完成后如何保存 浏览:729
如何地推卖产品 浏览:228