导航:首页 > 数据处理 > 文章大数据怎么获得

文章大数据怎么获得

发布时间:2022-12-25 23:28:06

大数据怎么收集

一般来说,有些人寻找数据,是为了做出正确的商业决策;有些人要完善自己的技能,在事业上更上层楼;另一些人或为社会,或为科学而搜寻数据。

特别是,有些人收集详细的数据,是为了做出统计分析,却不知道绝大多数的人可以找到已经为他们做好了一部分统计分析的资讯,包括报告、表单数据的总汇,甚至只是具体事实,几乎所有的人都能够找到对他们有用的数据。

由于不知道怎样寻找丰富的数据,许多人根本不去寻找。他们根据自己的个人观点做决定,或者根据新闻报导做决定,即使使用数据,也不知道使用对他们有用的数据类型或数据的来源。

想要找到需要的数据,必须要有明确的目标,和使用它的目地。资讯的目标越清晰,找到合适的资源就越容易。

下面是四种主要的数据来源,可以引导你找到最好的数据。

1)内部资讯

自己工作单位里面已经有的资讯,是获取数据首先应该考虑的地方。你可以找到对你的机构特别相关的、竞争者找不到的,详细的数据。

这并不容易,你必须明白是什么部门收集和保存这些数据,如何能够访问这个网址,以及允许什么样的用途。这是为什么明确的、详细的目标是如此的重要。

你可能需要向管理阶层提出正式申请,获得准许,而成功与否则要看你的特定目标和一个清晰的商业案例。

拒绝走后门或捷径的诱惑。 你的IT部门设下的规则也许让你头痛, 但是它们的设立是为了保证你的工作单位遵守法律。

2)政府及非营利组织

如果你必须从单位以外的地方搜寻数据,一定要尽量从政府机构或非营利组织搜寻资料。每一个政府机构都会收集数据,而且它们有法律上的义务同公众分享,至少分享一部分数据。 海量多的资料就在电脑、电话或公共图书馆里,等你使用。

政府机构的数据有些是交易型的 ,就是为了做出分析,特别收集起来的一份政府活动记录或统计; 例如财产转让和投票记录,就是交易型的数据。人口普查是统计数据,消费物价指数也是。虽然交易数据通常只有详细的表格,例如个人的交易记录,但是为了保护个人隐私,统计数据通常是汇总的型态。

有些机构的数据比别的机构有用,但是首先你得找到这个机构才能找到其它。需要一般美国人的数据,找美国人口普查局;需要知道猪腩的价格,找农业部。网上有一个门户网站data.gov,可以帮你找到数据,但是如果你不熟悉术语或找不到正确的名称,别放弃,可以打电话到似乎最适合的机构去问。

许多非营利组织是他们的专业领域中良好的数据来源。例如企业信息,就要调查相关的行业协会。一个很好的资料来源是《协会网络全书》( Encyclopedia of Associations),包含有企业协会、社会事业协会和研究协会。这本书在大多数公共图书馆和大学图书馆里都可以找到。 记住,这些机构通常分享的资讯都是报告的形式,不是数据,所以向他们申请资讯时要说清楚你要的是数据。

如果网上找到的数据来源不明确、不对应,不要使用它。网上浮动的数据集对于练习数据分析的人可能很有用, 但是如果你要靠它来决定策略,你最好知道它的正确来源。

3)商业性

如果你需要的数据无法从内部、政府机构,或非营利组织得到,不妨考虑购买它。 有些由政府收集和格式化的数据意义重大,价钱也便宜。不过要小心,并非所有的商业性数据的质量都好。在花费大价钱购买以前,问问出售者数据是怎样得到的,如何处理的,并且调查一些样本。

4)收集新的数据

最后一招是,由于数据根本不存在,而无法找到时,不妨自己出去收集一下。这要看你需要的是什么数据。你可以根据你所需要的数据,进行一项调查,安装传感器或派人出去观察、衡量,得出数据。这可能会即花时间又花钱,好处是你收集的数据是你真正需要的,而且完全属于你自己。

❷ 大数据到底是怎么来的

肯锡全球调研室得到的定义是:一种企业规模大到在得到、存储、管理方案、分析方面极大地超出了传统数据库软件工具专业能力范围的数据融合,具有很多的数据企业规模、快速的数据运行、各种各样的数据类型和实用价值密度低四大特性。

大数据专业性的战略意义不在于掌握极大的数据信息,而在于对这类含有现实意义的数据进行专业化处理。换而言之,倘若把大数据比作一种全产业链,那么这种全产业链进行盈利的关键,在于提高对数据的“生产量”,依据“生产制造”进行数据的“增值”。

从技术上看,大数据与大数据技术的关系好似一枚硬币的正反面一样密切联系。大数据必然不能用每台的计算机进行处理,尽量采用分布式架构。它的特性在于对很多数据进行分布式架构数据挖掘。但它尽量依靠大数据技术的分布式架构处理、分布式架构数据库和云端存储、虚拟化技术。

随着着云时代的来临,大数据(Bigdata)也吸引了越来越多的关注。分析师卓越团队感觉,大数据(Bigdata)一般 用以叙述一个公司铸就的许多非结构性数据和半结构性数据,这类数据在一键下载到关系型数据库用于分析的情况下会开销过多时间和金钱。大数据分析常和大数据技术联系到一起,因为及时的大中小型数据集分析务必像MapRece一样的构架来向数十、数百或甚至数千的电脑分配工作上。

大数据务必与众不同的专业性,以有效地处理许多的承受经历时间内的数据。可用大数据的专业性,包括规模化并行处理(MPP)数据库、数据挖掘、分布式系统、分布式架构数据库、云计算技术、大数据技术和可扩展的分布式系统。

关于大数据到底是怎么来的,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

❸ 如何获取大数据信息

一、公开数据库
常用数据公开网站:

UCI:经典的机器学习、数据挖掘数据集,包含分类、聚类、回归等问题下的多个数据集。很经典也比较古老,但依然活跃在科研学者的视线中。

国家数据:数据来源中华人民共和国国家统计局,包含了我国经济民生等多个方面的数据,并且在月度、季度、年度都有覆盖,全面又权威。

亚马逊:来自亚马逊的跨科学云数据平台,包含化学、生物、经济等多个领域的数据集。

figshare:研究成果共享平台,在这里可以找到来自世界的大牛们的研究成果分享,获取其中的研究数据。

github:一个非常全面的数据获取渠道,包含各个细分领域的数据库资源,自然科学和社会科学的覆盖都很全面,适合做研究和数据分析的人员。

二、利用爬虫可以获得有价值数据
这里给出了一些网站平台,我们可以使用爬虫爬取网站上的数据,某些网站上也给出获取数据的API接口,但需要付费。

1.财经数据,2.网贷数据;3.公司年报;4.创投数据;5.社交平台;6.就业招聘;7.餐饮食品;8.交通旅游;9.电商平台;10.影音数据;11.房屋信息;12.购车租车;13.新媒体数据;14.分类信息。

三、数据交易平台
由于现在数据的需求很大,也催生了很多做数据交易的平台,当然,出去付费购买的数据,在这些平台,也有很多免费的数据可以获取。

优易数据:由国家信息中心发起,拥有国家级信息资源的数据平台,国内领先的数据交易平台。平台有B2B、B2C两种交易模式,包含政务、社会、社交、教育、消费、交通、能源、金融、健康等多个领域的数据资源。

数据堂:专注于互联网综合数据交易,提供数据交易、处理和数据API服务,包含语音识别、医疗健康、交通地理、电子商务、社交网络、图像识别等方面的数据。



四、网络指数
网络指数:指数查询平台,可以根据指数的变化查看某个主题在各个时间段受关注的情况,进行趋势分析、舆情预测有很好的指导作用。除了关注趋势之外,还有需求分析、人群画像等精准分析的工具,对于市场调研来说具有很好的参考意义。同样的另外两个搜索引擎搜狗、360也有类似的产品,都可以作为参考。

阿里指数:国内权威的商品交易分析工具,可以按地域、按行业查看商品搜索和交易数据,基于淘宝、天猫和1688平台的交易数据基本能够看出国内商品交易的概况,对于趋势分析、行业观察意义不小。

友盟指数:友盟在移动互联网应用数据统计和分析具有较为全面的统计和分析,对于研究移动端产品、做市场调研、用户行为分析很有帮助。除了友盟指数,友盟的互联网报告同样是了解互联网趋势的优秀读物。

五、网络采集器
网络采集器是通过软件的形式实现简单快捷地采集网络上分散的内容,具有很好的内容收集作用,而且不需要技术成本,被很多用户作为初级的采集工具。

造数:新一代智能云爬虫。爬虫工具中最快的,比其他同类产品快9倍。拥有千万IP,可以轻松发起无数请求,数据保存在云端,安全方便、简单快捷。

火车采集器:一款专业的互联网数据抓取、处理、分析,挖掘软件,可以灵活迅速地抓取网页上散乱分布的数据信息。

八爪鱼:简单实用的采集器,功能齐全,操作简单,不用写规则。特有的云采集,关机也可以在云服务器上运行采集任务。

❹ 如何获取大数据

问题一:怎样获得大数据? 很多数据都是属于企业的商业秘密来的,你要做大数据的一些分析,需要获得海量的数据源,再此基础上进行挖掘,互联网有很多公开途径可以获得你想要的数据,通过工具可以快速获得,比如说象八爪鱼采集器这样的大数据工具,都可以帮你提高工作效率并获得海量的数据采集啊

问题二:怎么获取大数据 大数据从哪里来?自然是需要平时对旅游客群的数据资料累计最终才有的。
如果你们平时没有收集这些数据 那自然是没有的

问题三:怎么利用大数据,获取意向客户线索 大数据时代下大量的、持续的、动态的碎片信息是非常复杂的,已经无法单纯地通过人脑来快速地选取、分析、处理,并形成有效的客户线索。必须依托云计算的技术才能实现,因此,这样大量又精密的工作,众多企业纷纷借助CRM这款客户关系管理软件来实现。
CRM帮助企业获取客户线索的方法:
使用CRM可以按照统一的格式来管理从各种推广渠道获取的潜在客户信息,汇总后由专人进行筛选、分析、跟踪,并找出潜在客户的真正需求,以提供满足其需求的产品或服务,从而使潜在客户转变为真正为企业带来利润的成交客户,增加企业的收入。使用CRM可以和网站、电子邮件、短信等多种营销方式相结合,能够实现线上客户自动抓取,迅速扩大客户线索数量。

问题四:如何进行大数据分析及处理? 大数据的分析从所周知,大数据已经不简简单单是数据大的事实了,而最重要的现实是对大数据进行分析,只有通过分析才能获取很多智能的,深入的,有价值的信息。那么越来越多的应用涉及到大数据,而这些大数据的属性,包括数量,速度,多样性等等都是呈现了大数据不断增长的复杂性,所以大数据的分析方法在大数据领域就显得尤为重要,可以说是决定最终信息是否有价值的决定性因素。基于如此的认识,大数据分析普遍存在的方法理论有哪些呢?1. 可视化分析。大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。2. 数据挖掘算法。大数据分析的理论核心就是数据挖掘算法,各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值。另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了。3. 预测性分析。大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据。4. 语义引擎。非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。5.数据质量和数据管理。大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值。大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法。大数据的技术数据采集:ETL工具负责将分布的、异构数据源中的数据如关系数据、平面数据文件等抽取到临时中间层后进行清洗、转换、集成,最后加载到数据仓库或数据集市中,成为联机分析处理、数据挖掘的基础。数据存取:关系数据库、NOSQL、SQL等。基础架构:云存储、分布式文件存储等。数据处理:自然语言处理(NLP,Natural Language Processing)是研究人与计算机交互的语言问题的一门学科。处理自然语言的关键是要让计算机”理解”自然语言,所以自然语言处理又叫做自然语言理解(NLU,Natural Language Understanding),也称为计算语言学(putational Linguistics。一方面它是语言信息处理的一个分支,另一方面它是人工智能(AI, Artificial Intelligence)的核心课题之一。统计分析:假设检验、显着性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。数据挖掘:分类(Classification)、估计(Estimation)、预测(Predic胆ion)、相关性分组或关联规则(Affinity grouping or association rules)、聚类(Clustering)、描述和可视化......>>

问题五:网络股票大数据怎么获取? 用“网络股市通”软件。
其最大特色是主打大数据信息服务,让原本属于大户的“大数据炒股”变成普通网民的随身APP。

问题六:通过什么渠道可以获取大数据 看你是想要哪方面的,现在除了互联网的大数据之外,其他的都必须要日积月累的

问题七:通过什么渠道可以获取大数据 有个同学说得挺对,问题倾向于要的是数据,而不是大数据。
大数据讲究是全面性(而非精准性、数据量大),全面是需要通过连接来达成的。如果通过某个app获得使用该app的用户的终端信息,如使用安卓的占比80%,使用iPhone的占比为20%, 如果该app是生活订餐的应用,你还可以拿到使用安卓的这80%的用户平时网上订餐倾向于的价位、地段、口味等等,当然你还会获取这些设备都是在什么地方上网,设备的具体机型你也知道。但是这些数据不断多么多,都不够全面。如果将这部分用户的手机号或设备号与电子商务类网站数据进行连接,你会获取他们在电商网站上的消费数据,倾向于购买的品牌、价位、类目等等。每个系统可能都只存储了一部分信息,但是通过一个连接标示,就会慢慢勾勒出一个或一群某种特征的用户的较全面的画像。

问题八:如何从大数据中获取有价值的信息 同时,大数据对公共部门效益的提升也具有巨大的潜能。如果美国医疗机构能够有效地利用大数据驱动医疗效率和质量的提高,它们每年将能够创造超过3万亿美元的价值。其中三分之二是医疗支出的减少,占支出总额超过8%的份额。在欧洲发达国家, *** 管理部门利用大数据改进效率,能够节约超过14900亿美元,这还不包括利用大数据来减少欺诈,增加税收收入等方面的收益。
那么,CIO应该采取什么步骤、转变IT基础设施来充分利用大数据并最大化获得大数据的价值呢?我相信用管理创新的方式来处理大数据是一个很好的方法。创新管道(Innovation pipelines)为了最终财务价值的实现从概念到执行自始至终进行全方位思考。对待大数据也可以从相似的角度来考虑:将数据看做是一个信息管道(information pipeline),从数据采集、数据访问、数据可用性到数据分析(4A模型)。CIO需要在这四个层面上更改他们的信息基础设施,并运用生命周期的方式将大数据和智能计算技术结合起来。
大数据4A模型
4A模型中的4A具体如下:
数据访问(Access):涵盖了实时地及通过各种数据库管理系统来安全地访问数据,包括结构化数据和非结构化数据。就数据访问来说,在你实施越来越多的大数据项目之前,优化你的存储策略是非常重要的。通过评估你当前的数据存储技术并改进、加强你的数据存储能力,你可以最大限度地利用现有的存储投资。EMC曾指出,当前每两年数据量会增长一倍以上。数据管理成本是一个需要着重考虑的问题。
数据可用性(Availability):涵盖了基于云或者传统机制的数据存储、归档、备份、灾难恢复等。
数据分析(Analysis):涵盖了通过智能计算、IT装置以及模式识别、事件关联分析、实时及预测分析等分析技术进行数据分析。CIO可以从他们IT部门自身以及在更广泛的范围内寻求大数据的价值。
用信息管道(information pipeline)的方式来思考企业的数据,从原始数据中产出高价值回报,CIO可以使企业获得竞争优势、财务回报。通过对数据的完整生命周期进行策略性思考并对4A模型中的每一层面都做出详细的部署计划,企业必定会从大数据中获得巨大收益。 望采纳

问题九:如何获取互联网网大数据 一般用网络蜘蛛抓取。这个需要掌握一门网络编程语言,例如python

问题十:如何从网络中获取大量数据 可以使用网络抓包,抓取网络中的信息,推荐工具fiddler

❺ 大数据学习:提取大数据7 个关键步骤是什么

【导读】在大数据分析师日常工作中,提取数据是非常平常的一件工作,不过不同人有着不一样的结果,如果分析与企业所需有所偏颇,那么数据分析师很难在大数据项目上取得成功,今天我们就来进行大数据学习,提取大数据7
个关键步骤是什么?教你提取出大数据黄金,为此小编有以下几点建议,一起来看看吧!

1.从传统的关系数据库数据开始

这是存储在SQL或其他关系数据库中的列和行中的数据,用户可以轻松查询,如果您正在销售中,则可以开始查看不同的产品,查看在哪里和向谁销售了多少产品,退回了多少产品,库存水平等等,仅凭此数据,就可以在销售,库存水平,客户位置,服务记录等之间建立许多关系,由于与销售有关的数据太多,因此对于企业用户来说,销售是一个容易的领域,在这个区域中添加大数据非常容易,可以提高查询的深度,因此您可以真正找到想要的难以捉摸的黄金。

2.将大数据添加到您现有的关系数据库查询中

一旦公司了解了关系数据库的销售数据,肯定会出现新的问题,一家公司可能会在没有任何解释的时间内看到销售激增,这些销售高峰是反常的,因此该公司决定在其关系数据中添加一些大数据,以弄清正在发生的事情,它做出的大数据选择之一就是引入天气信息,这可能会传入作为XML数据流,该公司发现,在天气多云的日子里,销售往往会激增,这可能会促使人们进行购物等活动。”

3.逐步向查询中添加更多大数据

通过将大数据添加到传统的销售查询数据中,该公司现在已进入大数据领域,从这里开始,可以轻松添加更多类型的大数据,进行销售报告的合理的下一步可能是添加客户和其他人对您的产品的评论,一旦开始对销售提出疑问,并意识到某些类型的数据如何能够帮助您更好地理解业务,就很容易添加到大数据源中。

4.逐步培训您的员工

许多公司缺乏数据科学家和大数据分析师所需的技能,这就是从关系数据库数据开始然后逐步扩展到添加不同类型的大数据的方法如此吸引人的方法,您可以逐步增加员工对大数据的了解,那里有工具和顾问可以根据需要为您提供帮助,但是当您的员工从他们已经非常了解的关系数据库基础开始时,开始使用大数据就不是很大的飞跃了,他们追加并在这个基础上扩大。

5.考虑数据的混合报告环境

一旦开始将大数据添加到关系数据库查询中,就需要为该数据定义另一个数据存储库,非结构化大数据不能驻留在关系数据库中,您需要做的是定义一个大数据数据库,将传统数据和大数据的组合移到该大数据数据库中,好消息是您不必为此花费新的资金来购买新的服务器和存储,有许多云供应商可以为您托管Hadoop或其他大数据数据库中的数据,他们也可以管理这些数据,对于仍在努力从大数据中获取业务意义的公司而言,最好的消息是,他们可以逐步地通过从传统数据库启动业务和IT员工,将其业务和IT员工转移到生产性大数据项目中。和每个人都已经熟悉的报告基础。

这可以减轻业务用户和IT员工的焦虑,因为他们可以从他们所了解的内容入手。当您进入更具雄心的大数据项目时,它还降低了失败的风险。

以上就是小编今天给大家整理发送的关于“大数据学习:提取大数据7
个关键步骤是什么?”的相关内容,希望对大家有所帮助。那我们如何入门学习大数据呢,如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

❻ 怎样获得大数据

我们获得大数据一般通过一些统计网站来直接看,如果你想看什么的数据的话就设计个插件绑定到网址来统计

❼ 大数据挖掘方法有哪些

方法1.Analytic Visualizations(可视化分析)


无论是日志数据分析专家还是普通用户,数据可视化都是数据分析工具的最基本要求。可视化可以直观地显示数据,让数据自己说话,让听众看到结果。


方法2.Data Mining Algorithms(数据挖掘算法)


如果说可视化用于人们观看,那么数据挖掘就是给机器看的。集群、分割、孤立点分析和其他算法使我们能够深入挖掘数据并挖掘价值。这些算法不仅要处理大量数据,还必须尽量缩减处理大数据的速度。


方法3.Predictive Analytic Capabilities(预测分析能力)


数据挖掘使分析师可以更好地理解数据,而预测分析则使分析师可以根据可视化分析和数据挖掘的结果做出一些预测性判断。


方法4.semantic engine(语义引擎)


由于非结构化数据的多样性给数据分析带来了新挑战,因此需要一系列工具来解析,提取和分析数据。需要将语义引擎设计成从“文档”中智能地提取信息。


方法5.Data Quality and Master Data Management(数据质量和主数据管理)


数据质量和数据管理是一些管理方面的最佳实践。通过标准化流程和工具处理数据可确保获得预定义的高质量分析结果。


关于大数据挖掘方法有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

❽ 大数据采集从哪些方面入手

1. 数据质量把控


不论什么时候应用各种各样数据源,数据质量全是一项挑战。这代表着企业必须做的工作中是保证数据格式准确配对,并且没有重复数据或缺乏数据导致分析不靠谱。企业必须先分析和提前准备数据,随后才可以将其与别的数据一起开展分析。


2.拓展


大数据的使用价值取决于其数量。可是,这也将会变成一个关键难题。假如企业并未设计构架方案开始进行拓展,则将会迅速面临一系列问题。其一,假如企业不准备基础设施建设,那么基础设施建设的成本费便会提升。这将会给企业的费用预算带来压力。其二,假如企业不准备拓展,那么其特性将会明显降低。这两个难题都应当在搭建大数据构架的整体规划环节获得处理。


3、安全系数


尽管大数据能够为企业加深对数据的深入了解,但保护这种数据依然具备挑战性。欺诈者和网络黑客将会对企业的数据十分感兴趣,他们将会试着加上自身的仿冒数据或访问企业的数据以获得敏感信息。


互联网犯罪嫌疑人能够制作数据并将其引进其数据湖。比如,假定企业追踪网址点一下频次以发觉总流量中的出现异常方式,并在其网址上搜索犯罪行为,互联网犯罪嫌疑人能够渗入企业的系统软件,在企业的大数据中能够寻找很多的比较敏感信息,假如企业没有维护周围环境,数据加密数据并勤奋密名化数据以清除比较敏感信息的话,互联网犯罪嫌疑人将会会发掘其数据以获得这种信息。


关于大数据采集从哪些方面入手,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

❾ 如何在网络营销中收集大数据

1. 诱饵设计方案


如何获得客户信息资料,只有让客户主动将信息告诉我们才是最真实、有用的客户数据库。那么,如何让客户主动告知呢,这就是诱饵设计,有相应的诱饵,满足客户的需求与欲望,辅以相应的客户信息收集机制,客户不难将信息告知于你。譬如,你有一个行业内的精品且不公开的资料,需要这份资料的需要留下邮箱地址(当然也可以是QQ、微信、手机等),然后发送给留下的邮箱,相信需要这份资料的人不会不愿意留下他的邮箱地址的,这就是一份成功的用于收集客户数据的诱饵设计方案。


2. 线下数据收集


其实,每个人、每一个生意都是有线下的圈子、客户的。尤其是对于现在进入电商的传统企业来说,线下客户数据是一份优质的资源,譬如经销商的客户购买信息的录入与整理等等。


3. 相关相近行业合作


尤其是不同产品但是属于相同或相近行业的。萧伯纳说过:“你有一个苹果,我有一个苹果,我们彼此交换,每人还是一个苹果;你有一种思想,我有一种思想,我们彼此交换,每人可拥有两种思想。”,同理,这个道理用于客户数据的收集与整理也同样适用,如果有2个公司同为出售汽车产品,一个公司出售汽车灯,一个公司出售汽车坐垫,这样2家公司完全可以达成合作关系共享客户数据,这样可以增加一倍的潜在客户。


关于如何在网络营销中收集大数据,环球青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

❿ 大数据时代SEO数据如何搜集和分析

大数据时代SEO数据如何搜集和分析

在这个人人都高喊“大数据时代”的今天,数据似乎被提到一个前所未有的高度。无论是个人站长还是大中型公司,亦或是大型跨国集团,无论是网络营销还是线下的市场营销都在意识到数据的重要性,凡是都以数据来说话。但是,据笔者了解,在很多中小型公司和个人站长中,对于数据重视有余,却利用不足。
很多人不清楚需要搜集什么样的数据;也有的不清楚通过什么渠道来搜集数据;还有大部分不清楚搜集整理的数据如何去分析,进而也就不清楚怎么去利用这些数据。所以,很多数据也就仅仅只是数字,无法去转化和为公司利益服务,成了一个华丽丽的摆设或者鸡肋。先来说说三类将数据做成摆设的类型:1、重视数据但不清楚如何搜集,这是“被数据”类型。对数据处于模糊了解状态,由于生活在这个信息爆炸化时代,耳濡目染各种宣讲数据的重要性,自然也就重视起数据来,知道公司和企业做事和计划要靠数据来支撑。但是由于没有专业的相关数据人员,自己的公司(或者是个人站长)该做哪些数据,通过什么渠道来搜集整理,可谓是一知半解。最后可能是通过头脑风暴和网上的所谓教程来比葫芦画瓢,再加上咨询下同行,东拼西凑而成的数据,这样的数据自然就真的只是摆设了。2、了解所需数据但来源不规范,这是“误数据”类型。对数据了解比较了解,由于在互联网或者公司摸爬滚打多年,出于自身原因和目的大概知道该需要什么数据。但是同样由于没有专业的相关数据人员,对于数据的来源和制作并不规范,数据采集也可能存在误差。所以,这些数据就可能失真,利用价值自然也不是很大。其实,这类数据比第一类更加成了摆设。3、会做数据但不会解读分析,这是“贱数据”类型。对数据有清楚了解,并有准确的数据来源和较明确的数据需求,但是却等于入宝山而空回,坐拥金矿却不会利用,岂不是把这些可以带来真金白银的数据给轻贱了?只是简单的搜集整理,把数据形成可视化的报表,但是只是这些数据又能说明什么问题呢。数据背后的意义是什么,怎样去解读数据来为公司和个人创造价值,怎样去利用数据来规避可能存在的风险,怎样去利用数据分析出现的问题?这些才是数据的真正价值。说的有点多了,其实笔者今天主要讲的是网络营销中有关网站SEO的数据搜集和分析。sem和其他媒体营销基本都有较成熟的数据整理和分析模式,笔者就不再献丑赘述。以下讲的也只是较为大众化的数据模式。1、做哪些数据。有关SEO的数据应该需要三方面:①自身及竞争对手网站外部可统计查询数据:这部分数据可以通过外部站长工具综合查询得出。主要包括但不局限于:网站网址、快照日期、域名年龄、网站响应时间、同IP网站、pr值、网络权重、各搜索引擎收录量、各搜索引擎反链数、24小时网络收录、网络排名词量、预计网络流量、外链数、标题、meta标签、服务器信息。这些数据除适用于首页外,也可以适当用来查询内页数据。可以把这些相关数据做成excel表格,以供定期查询,可按照实际需求增减相关数据的查询。查询周期可每日、每周亦或是每月等,按照实际需求和具体情况来。②网站流量统计数据目前现在大部分的公司和站长的网站流量均采用流量统计工具,极大的方便了SEO相关人员统计整理数据的工作。目前比较专业的数据统计工具有CNZZ、51la和网络统计。论专业性来讲,CNZZ比较不错,论网络流量的准确性和敏感度,笔者觉得网络统计还不错。闲话少叙,流量数据主要包括但不限于:IP、PV、独立访客、人均浏览量、平均访问时长、跳出率、受访页面和域名、来源、搜索引擎比例、搜索关键词、访客详情、时段分析同样建议做成excel表格,以供定期查询,按照实际需求增减相关数据的查询。查询周期可每日、每周亦或是每月等,按照实际需求和具体情况来。
③可监控关键词数据
关键词监控比较简单,没什么好说的,只是建议把关键词进行分类监控汇总。主要包括但不限于:主关键词、主要长尾词、重要流量词、品牌词同样建议做成excel表格,以供定期查询,按照实际需求增减相关数据的查询。查询周期可每日、每周亦或是每月等,按照实际需求和具体情况来。
2、通过什么渠道来搜集数据互联网时代也是工具代替人工的时代,用工具办到的事既快又方便,何乐不为。①自身及竞争对手网站外部可统计查询数据。既然是外部可查询,一般的站长类工具都可以去查询,笔者比较喜欢的有爱站和站长之家这两个在线查询网站。尤其是站长之家在数据方面做得比较专业。②网站流量统计数据。流量统计工具的功能已经丰富了,并且主流的cnzz、51la等都有数据下载功能。③可监控关键词数据。这个如果是个人站长关键词量比较小,那么人工在搜索引擎和后台流量统计去一点点核实查询比较准确。如果批量关键词查询,最好是使用工具去查询,但目前的关键词排名软件在批量查询中一般都会出现误差,如果公司有能力,可以自己开发或编写这类功能的程序软件。3、如何分析搜集整理的数据成功者半九十,辛苦通过各种渠道观察搜集的数据,最精华的最具价值的地方在于有人看,而且要会看,通过这些数据为自己的网站得到一些启迪,并把它发挥出来为自身创造一定的利益。①自身及竞争对手网站外部可统计查询数据。这些数据分析是作为一个SEO分析自身网站和竞争对手最常用也是最基本的能力。通过这些数据(一定时间的观察后可绘制成趋势图)可以比较清楚的了解自身网站和竞争对手的网站优化情况以及在搜索引擎的权重表现。笔者简单介绍下如何去解读这些数据。
网络快照:一个网站快照越新,起码证明一个网站的内容每天都有新鲜的,网络蜘蛛的抓取更新也是比较频繁的,换言之,快照是网络蜘蛛对该网站的认可度。域名年龄:业界普遍认为,同等条件下,域名越老在搜索引擎获得权重相对越高。响应时间:这反映出网站的服务器性能的好坏。响应值越大,服务器性能越差,当然无论对于用户体验还是搜索引擎都是极为不利的影响。同IP网站:可以查看该IP下有多少网站,可以大致区分出网站所有者是选择网站托管还是购买独立IP,如果是独立IP,顺便可以看出该所有者还有哪些网站,顺藤摸瓜查看其他网站情况,知己知彼。PR值:这是之前谷歌官方对网站认可度和权重赋予的一种被外界了解的具体数值体现。虽然现在PR值越来越被淡化,但是作为可以衡量网站优劣标准的一个体现,仍具有参考价值。网络权重:这是第三方站长工具根据自身的运算体系揣测的网站在网络权重表现的一种数值,并没有得到网络的官方认可。但是作为站长衡量网站在网络表现优劣的一个参考,也对广大站长具有参考价值。反链数:通过站长工具查询的搜索引擎的反链数值其实大多都不是很准确,尤其是网络反链,查询命令得出的结果很不理想,网络反链值其实只是查询的域名相关域的搜索结果。不论如何,对于了解自身的外链途径和寻找了解竞争对手的外链手法也具有参考意义。收录量:各搜索引擎的总收录反映出网站在各个搜索引擎的表现。如果了解网站的总页面数,也可以更清楚的判断网站被各个搜索引擎收录的情况,从而分析网站是否存在问题以及存在哪些问题。每日收录/24小时收录:反映出网站被搜索引擎蜘蛛喜好程度和网站链接优化程度。排名词量:通过查看自己和竞争对手网站的排名词量,可以寻找网站优化的之间的差距,进而查看这些排名关键词相对应的页面优化情况。meta标签:查看网站该页面title、description、keywords是如何撰写的,尤其是查看竞争对手。分析为何这样写,会学到更多。
②网站流量统计数据自身精确的网站流量统计数据可以让站长对网站得到更多的了解。看出网站目前的优化情况,并可以为网站以后运营提供很好的参考。流量的分析往往不是单一的,是综合多种数值进行分析判断。这块的分析也是最为复杂的。 IP:分析往往通过日期对比来进行的,比如本周三与上周三,本月上旬与上月上旬。通过分析查看流量的变化情况,可以看出网站最近的变化。当然也有一些其他因素要考虑,比如天气、节假日、关键词排名、网站服务器有无宕机、新闻事件等等。PV:数值往往与跳出率和IP进行对比,从而判断网站的用户体验和用户黏性。uv:独立访客量,可以反映出有多少台电脑,也可能接近于多少真实人在访问网站。人均浏览量、平均访问时长、跳出率:IP与PV的比值,反映出网站用户体验好坏。受访域名和页面:可以看出网站哪些页面比较受欢迎以及在搜索引擎的权重表现。来源:访客是通过何种渠道进入到网站的,从而判断网站的受众,再进一步分析受众相关属性,可以更加清楚网站的目标人群以及网站运营策略执行情况。关键词:用户是搜索何种关键词来到网站,为网站布置关键词以及寻找关键词优化是一个很好的途径。访客属性:通过对访客的地域、教育程度、浏览器、网络接入商、操作系统、终端类型等属性的分析,可以更加详细的了解网站用户的情况,为以后网站的优化和运营提供参考。热点图:这个热点图功能,可以让站长看到页面内容被用户点击的情况,反映出网站页面的用户体验度以及为页面内容改进提供参考。
还有一些就不一一介绍了。③可监控关键词数据相对来说这块数据分析较为简单些,通过对关键词分类整理,然后查询在搜索引擎的排名情况,进而对比分析关键词带来的转化,可以看出优化情况。哪些还需要加强,哪些需要维护,哪些词高排名却没有带来实质的意义,进而调整网站优化策略。同时通过关键词带来的流量和转化,也可以对比分析其它流量贡献的转化,进而为整个网站运营方向和公司预算做出参考。备注:笔者以上所谈网站seo数据搜集整理及分析过程大部分针对中小型公司和个人站长而言,且由于精力有限,介绍内容也相对简易,望见谅。后记:关于《大数据时代SEO数据如何搜集和分析》几点说明之前写过一篇《大数据时代SEO数据如何搜集和分析》,由于所写内容比较多,而且很多内容都可以单独摘要出来写出一篇文章,融合在一篇文章中难免叙述不够详细。为避免篇幅过长影响阅读,笔者在个人博客是分两篇发表的,《seo数据如何规范化搜集整理》以及《网站seo数据如何分析》,除发表在个人博客外,把完整篇整合发表到了月光博客,标题未改。原本是为网站seo数据整理分析起一个规范说明作用,可能由于本人表达有限,导致很多网友误解。本人在此特声明以下几点进行纠正:1.文章重点不在于“大数据”。为 避免引起误解,在文章一再强调是为中小型企业seo数据整理分析提供借鉴,在开头已表达“首先声明,本文在数据高手面前,都有点多余,都是小儿科的班门弄 斧,故请高手勿耽误您的时间。”可能标题确实有点标题党的意味,妄谈了“大数据”,但是作为国内的广大中小型企业,big data和CloudComputing很难在公司中体现出来,但是伴随着big data和CloudComputing时代的到来,即便是中小企业特别是互联网公司也会受到影响。笔者相信,大数据的核心并非是死的数据,而是对数据分 析预测能力,所以本文的核心也在数据的整理和分析,而不是去谈对于中小企业不切实际的big data,更没有谈什么大数据分析。如果不是跨国集团及大型企业,产生不了海量数据,请别一味谈什么大数据,只会误人误己,更不要迷信大数据2.文章内容由于篇幅有限不能详细。笔者在文章末尾已给出声明,限于篇幅长度和个人精力不能详细阐述seo数据的搜集和分析工作,有些内容却是介绍比较简单,而且我也没有打算把它写作一篇教程。当然这些内容全是个人经验之谈,可能限于seo层面有些窄,但实属个人原创,至于说什么复制粘贴,或者说只是解释了一些名词,那么我无话可说。我相信 响鼓无需重锤,没必要手把手写一篇教程式文章,这是写给有一定基础的SEOer和营销团队看的。3.为何要搜集seo相应数据文章已有解释。很 多网友看了文章来问我为何要搜集那些数据或者问究竟要搜集哪些seo数据,其实虽然限于文章篇幅,但我还是大致列出了需要搜集整理的seo数据以及解释了 为何要搜集这些数据,在如何分析搜集整理的数据这一段中其实不光是介绍了如何分析数据的内容,也简单说明了为什么搜集这些数据,因为知道如何来看这些数据 就明白了为何要搜集这些数据。4.excel表格只是起到简单说明,并非真实案例说明。为了配合说明seo数据整理分析,只好自己临时简单制作了几个excel表格,也限于篇幅缘故,详细说明或者提供案例都让文章显得更长,只好作罢。说以再次请大家见谅没有提供案例,excel表格也只是简单说明,并没有参考价值。5.本文重在思路,而非实例操作分享。很多网友说在空谈理论,没有实质性东西。抱怨这类的我不去解释,因为多是外行。还是套用老话:响鼓不用重锤。本文只是在介绍一种搜集和分析的思路,以及简单的一个流程和规范化的说明。那些想看手把手教程式的网友定然大失所望,因为没有想要的所谓干货,因为这不是。我的大部分文章都是在分享有关网络营销经验的思路和策略,很少谈具体的技巧和手把手的教程式操作。因为我深信授之以鱼不如授之以渔,同样的操作方法和案例技巧并不一定适合于另一个网站,但是看问题的思路处理事情的策略才是值得分享和传播的。

阅读全文

与文章大数据怎么获得相关的资料

热点内容
发展高新技术产业需要什么 浏览:23
深技术是什么学校 浏览:278
电厂烟气有哪些脱氧技术 浏览:129
mac系统如何强行关闭运行的程序 浏览:758
代理文员工作有哪些 浏览:711
微信小程序字转语音怎么操作 浏览:882
从池州站怎么去池州职业技术学院 浏览:890
文昌海鲜市场有什么 浏览:48
哪些人不能进行证券交易 浏览:191
机顶盒怎么加程序 浏览:181
市场调研分哪些 浏览:622
房产中介收房子应该走什么程序 浏览:208
c程序循环语句是什么 浏览:177
海信电视哪个市场好 浏览:442
成熟的男人和程序员应该选哪个 浏览:587
信息量是怎么算 浏览:778
大数据什么是绩效考核 浏览:622
旅游优惠信息哪里看 浏览:600
高速倒车多久会收到信息 浏览:401
杭州联通信息中心电话是多少 浏览:356