⑴ 大数据专业有哪些就业岗位
大数据专业毕业后就业岗位主要有大数据架构师、大数据算法工程师、大数据运营维护工程师、数据分析师/挖掘师等。
前两个工作岗位偏技术,大数据架构师需要熟悉底层架构的,开发平台,数据建模,核心框架开发等,对计算机、数学,尤其是数据的知识要求高;大数据算法工程师对人的要求更高,开发算法,而且还要带团队,对人的学历和能力都有比较高的要求;大数据运营维护工程师,会偏向运营和维护,对人的要求低一些,门槛没有那么高;数据分析师/挖掘师,会偏向业务层面,需要调研需求,挖掘分析数据,包括沟通相应的客户,要求有比较强的与人沟通的能力。
偏技术就是接触技术更多,偏业务就是接触人偏多,可以说根据不同的性格,就可以胜任不同岗位的工作。当然不论在任何工作岗位,都需要很好的沟通表达能力,所以大学期间一定要对自己这方面的能力做提升。
这个领域待遇还是比较不错的,在一二线城市,3年以上,月薪都是能达到1万元以上的, 工作5年也是能达到月薪2-4万/月之间的,能力强薪资会越来越高,顶级的会更高。
⑵ 大数据毕业后去什么岗位就业
大数据的择业方向有大数据开发方向、数据挖掘数据分析和机器学习方向、大数据运维和云计算方向,主要从事互联网行业相关工作。
大数据学习内容主要有:
①JavaSE核心技术;
②Hadoop平台核心技术、Hive开发、HBase开发;
③Spark相关技术、Scala基本编程;
④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;
⑤大数据项目开发实战,大数据系统管理优化等。
工作岗位列举几个热门:
初级大数据离线处理,薪资10000-13000;
Spark开发工程师,薪资14000-16000;
Python爬虫工程师,薪资16000-20000;
大数据开发工程师,薪资20000+。
想要系统学习,你可以考察对比一下开设有IT专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能,建议实地考察对比一下。
祝你学有所成,望采纳。
⑶ 大数据专业可以从事哪些工作
大数据应用开发工程师。这是大多数据领域一个比较热门的岗位,有大量的传统应用需要进行大数据改造,因此大数据应用开发岗位有较多的人才需求。这个岗位需要掌握的知识结构包括大数据平台体系结构。
数据架构师。数据架构师是负责平台的整体数据架构设计,完成从业务模型到数据模型的设计工作,根据业务功能、业务模型,进行数据库建模设计,完成各种面向业务目标的数据分析模型的定义和应用开发,平台数据提取、数据挖掘及数据分析。
⑷ 2021大数据技术就业方向及前景 干什么工作好
从近两年大数据方向研究生的就业情况来看,大数据领域的岗位还是比较多的,尤其是大数据开发岗位,目前正逐渐从大数据平台开发向大数据应用开发领域覆盖,这也是大数据开始全面落地应用的必然结果。
(1)技术开源免费
主流的大数据技术都是开源的,大数据开发者可以免费获得。免费的技术和活跃的社区使版本迭代更快。例如Hadoop、Spark、Flink、HBase、Kafka大数据核心技术等。
(2)人才短缺
目前,根据人才市场的相关统计,虽然很多大数据岗位的人才需求很大,但大数据行业的从业人数不足5万人。
可以预测未来3-5年,大数据人才缺口将继续扩大至200W以上。因此,大数据就业前景将极为广阔。
(3)行业高薪
大数据的薪酬高于一般的开发工程师。而且,如果学好大数据技术,将有更多的机会进入大厂。例如阿里巴巴、腾讯等一线互联网公司仍然需要大量大数据人才。
1.互联网电商方向
作为当前最热门的风口,互联网电商是互联网领域应用于实践最多的地方,也是积累技术资源最丰富、资金最雄厚、人才需求量最大的部分。大数据技术与应用专业毕业生可以从事互联网电商运营维护、日常管理、消费大数据分析、金融数据风控管理等相关技术工作。目前大到已经上市的头部电商平台小到社区电商,这些技术人才的缺口都比较大。
2.零售金融方向
零售金融与互联网电商虽然同属于消费大范畴领域,但是具体而言,零售电商的范围要小于互联网电商,比互联网电商更需要精准对接消费群体和消费群体的爱好、收入等特征。大数据技术与应用专业毕业生可以从事基于计算机、移动互联网、电子信息、电子商务技术、电子金融等领域的数据分布式程序开发、大数据集成平台的应用、开发等方面的工作。适合在零售金融企业承担相关技术服务工作,也可在IT领域从事计算机应用工作。
3.电子政务服务方向
随着电子政务服务的不断加快,无纸化办公、电子化办公、一站式服务、一键搞定服务等逐步在各大城市应用,尤其是在北京、上海、深圳等一线城市,基本上实现了电子政务服务全覆盖。群众办事只需要一个手机就可以实现原来需要跑很多趟、来回奔波的业务。作为服务领域之一的大数据技术与应用专业毕业生可以在相关企业从事电子政务服务对接工作,进行基于电子政务的大数据平台运维、大数据分析、大数据挖掘等相关工作。
4.其他方向
除了专业对口的工作以外,大数据技术与应用专业还可以凭借所学知识可以选择自主创业、考取公务员、从事销售等工作。总的来看,作为新一代信息技术的主流发展方向,大数据技术与应用发展前景十分广阔,所处行业也是朝阳行业,只要努力学习,把专业知识学扎实,毕业后就不用工作问题。
⑸ 大数据毕业后去什么岗位就业
大数据开发工程师:负责公司大数据平台的开发和维护,负责大数据平台持续集成相关工具平台的架构设计与产品开发等,具体来看一下!
1. 数据工程方向
毕业生能够从事基于计算机、移动互联网、电子信息、等各种相关领域的Java大数据分布式程序开发、大数据集成平台的应用、开发等方面的工作,也可以就在IT领域从事计算机应用工作
2. 数据分析方向
缺啊,数据分析师一出手!市场导向全在手,大数据毕业生做数据分析,多理所应当的一件事情!数据分析方向还可以分得更细,数据存储和管理、数据清理、数据挖掘、数据可视化,大数据很难的你们晓得吧,这些岗位也都是分开招人的,所以说,你就得逮着一个方向使劲儿学,不然你跟不是大数据专业的计算机毕业生之间有啥子区别哦!
3. 大数据运维方向
这个嘛!云计算和大数据是紧密相连的吗,一个负责搞出来数据,一个负责计算数据,还是抢手的嘞!运营工程师基本是负责服务的稳定性,维护并确保整个服务的高可用性,同时做优化。
数据科学与大数据技术,简称大数据专业。
是2016年以来国内新开的专业学科之一,这几年“大数据”成为发展最快的专业。大数据专业是一门实践性很强的新兴交叉学科,以大数据分析为核心,以统计学、计算机科学和数学为三大基础支撑性学科,培养面向多层次研究、应用需求的高级人才。
大数据专业毕业生可以胜任大数据技术开发与应用,大数据运维和云计算等工作,在未来发展前景很好的,可以去大型互联网公司就业,做前、后端开发、数据分析师、机器学习算法工程师,App开发、智能游戏设计与开发、数据科学家等。
⑹ 大数据毕业出来能找什么样的工作
1、首席数据官(CDO)
首席数据官的作业内容十分多,责任也很杂乱,他们担任公司的数据结构建立、数据办理、数据安全保证、商务智能办理、数据洞悉和高档剖析。因而,首席数据师有必要个人能力拔尖,一起还需求具有满足的领导力和远见,找准公司开展方针,和谐应变办理进程。
2、营销剖析师/客户关系办理剖析师
客户忠诚度项目、网络剖析和物联网技能积攒了许多的用户数据,许多先进公司现已在运用相关战略来支撑公司的开展计划。
尤其是商场部分可以运用这些数据进行更有针对性的营销。营销剖析师可以发挥他们在Excel和SQL等数据剖析东西方面的专业特长,对客户进行细分,保证数字化营销可以抵达方针客户集体。
3、数据工程师
跟着Hadoop和非结构化数据仓库的盛行,一切剖析功用的榜首要务就是要得到正确的数据。商务智能和数据科学都要求有洁净的、有序的且可用的数据结构,而这通常是经过SQL效劳器、甲骨文(Oracle)和SAP公司数据库来完成的。
高水平的工程师需求把握数据办理技能,了解提取转化加载进程,许多公司都急需这样的人才。事实上,许多首席数据官乃至以为,数据工程师才是大数据相关职业中最重要的职位。
4、商务智能开发工程师
商务智能开发工程师的最基本职能,是办理结构数据从数据库分配至终端用户的进程。商务智能(BI)从前仅仅商务金融的根底,现在现已独立出来,成为了独自的部分,许多商务智能团队正在建立自效劳指示板,这样运营司理就能快速且有效地获取高性能数据,点评公司运营状况。
5、数据科学家
优异的数据科学家可以运用先进的剖析原理和Python,R或Spark等数据编程东西来辨认并处理高度杂乱的事务问题。剖析将在决议计划中发挥核心作用,供给智力支撑,以保证公司可以在日益杂乱的商业环境中取得成功。
⑺ 大数据毕业后可以从事什么工作
学大数据从事的职业常常分为大数据系统研发人员、大数据应用开发人员和大数据分析人员,常见的职业有数据分析师、数据架构师、数据挖掘工程师、数据算法工程师等等。
以下是学大数据可以从事的职业介绍:
1、数据分析师:从事行业数据搜集、整理、分析方面的工作,依据数据做出行业研究、评估和预测。需要掌握SPSS、STATISTIC、Eviews、SAS等数据分析工具以及数据分析的营销思维。
2、数据架构师:负责平台的整体数据架构设计,完成从业务模型到数据模型的设计工作,根据业务功能、业务模型,进行数据库建模设计,完成各种面向业务目标的数据分析模型的定义和应用开发,平台数据提取、数据挖掘及数据分析。
3、数据应用师:用常人能理解的语言表述出数据所蕴含的信息,并根据数据分析结论推动企业内部做出调整。将数据还原到产品中,为产品所用。
4、数据挖掘工程师:从大量的数据中通过算法搜索隐藏于其中的信息,使企业决策智能化、自动化,提高企业工作效率,减少错误决策的可能性。需要具备深厚的统计学基础,需要熟悉R、SAS、 SPSS等统计分析软件。
5、数据算法工程师:负责大数据产品数据挖掘算法与模型部分的设计,制定数据建模、数据处理和数据安全等架构规范并落地实施。需要具备扎实的数据挖掘基础知识,精通机器学习、数学统计常用算法,掌握常见分布式计算框架和技术原理,如Hadoop、MapRece、 Yarn、Storm、Spark等;熟悉Linux操作系统和Shell编程,至少熟练掌握一门编程语言。
⑻ 大数据专业可以从事哪些工作
1、Hadoop开发工程师
Hadoop是一个分布式文件系统(Hadoop Distributed File System),简称HDFS。Hadoop是一个能够对大量数据进行分布式处理的软件框架, 以一种可靠、高效、可伸缩的方式进行数据处理。所以说Hadoop解决了大数据如何存储的问题,因而在大数据培训机构中是必须学习的课程。
2、数据分析师
数据分析师是数据师的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
作为一名数据分析师、至少需要熟练SPSS、STATISTIC、Eviews、SAS、大数据魔镜等数据分析软件中的一门,至少能用Acess等进行数据库开发,至少掌握一门数学软件如matalab、mathmatics进行新模型的构建,至少掌握一门编程语言。总之,一个优秀的数据分析师,应该业务、管理、分析、工具、设计都不落下。
3、数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。
经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapRece写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
4、大数据可视化工程师
随着大数据在人们工作及日常生活中的应用,大数据可视化也改变着人类的对信息的阅读和理解方式。从网络迁徙到谷歌流感趋势,再到阿里云推出县域经济可视化产品,大数据技术和大数据可视化都是幕后的英雄。
⑼ 大数据就业岗位有哪些
大数据方面的就业主要有三大方向:
一是数据分析类大数据人才,二是系统研发类大数据人才,三是应用开发类大数据人才。他们的基础岗位分别是大数据系统研发工程师、大数据应用开发工程师、大数据分析师。
2大数据热门专业
1、Hadoop开发 随着数据规模不断增大,传统BI的数据处理成本过高企业负担加重。而Hadoop廉价的数据处理能力被重新挖掘,企业需求持续增长。并成为大数据人才必须掌握的一种技术。
2、信息架构开发 大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以十分有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。
3、数据安全研究 数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。
4、ETL研发 企业数据种类与来源的不断增加,对数据进行整合与处理变得越来越困难,企业迫切需要一种有数据整合能力的人才。ETL开发者这是在此需求基础下而诞生的一个职业岗位。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL。
⑽ 大数据专业就业方向
大数据工程师、大数据维护工程师、数据挖掘师、大数据算法师。
大数据开发方向:涉及的岗位诸如大数据工程师、大数据维护工程师、大数据研发工程师、大数据架构师等。
数据挖掘、数据分析和机器学习方向:涉及的岗位诸如大数据分析师、大数据高级工程师、大数据分析师专家、大数据挖掘师、大数据算法师等。
1、提升程序设计能力。动手实践能力对于本科生的就业有非常直接的影响,尤其在当前大数据落地应用的初期,很多应用级岗位还没有得到释放,不少技术团队比较注重学生程序设计能力,所以具备扎实的程序设计基础还是比较重要的。
2、掌握一定的云计算知识。大数据本身与云计算的关系非常紧密,未来不论是从事大数据开发岗位还是大数据分析岗位,掌握一定的云计算知识都是很有必要的。掌握云计算知识不仅能够提升自身的工作效率,同时也会拓展自身的技术边界。