导航:首页 > 数据处理 > 转大数据要学哪些东西

转大数据要学哪些东西

发布时间:2022-12-23 18:16:00

1. 大数据专业主要学什么

当前大数据应用尚处于初级阶段,根据大数据分析预测未来、指导实践的深层次应用将成为发展重点。各大互联网公司都在囤积大数据处理人才,从业人员的薪资待遇也很不错。

这里介绍一下大数据要学习和掌握的知识与技能:

①java:一门面向对象的计算机编程语言,具有功能强大和简单易用两个特征。

②spark:专为大规模数据处理而设计的快速通用的计算引擎。

③SSM:常作为数据源较简单的web项目的框架。

④Hadoop:分布式计算和存储的框架,需要有java语言基础。

⑤spring cloud:一系列框架的有序集合,他巧妙地简化了分布式系统基础设施的开发。

⑤python:一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。

互联网行业目前还是最热门的行业之一,学习IT技能之后足够优秀是有机会进入腾讯、阿里、网易等互联网大厂高薪就业的,发展前景非常好,普通人也可以学习。

想要系统学习,你可以考察对比一下开设有相关专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力,能够在校期间取得大专或本科学历,中博软件学院、南京课工场、南京北大青鸟等开设相关专业的学校都是不错的,建议实地考察对比一下。

祝你学有所成,望采纳。

2. 大数据专业主要学什么 有哪些课程

数据科学与大数据技术,强调交叉学科特点,以大数据分析为核心,以统计学、计算机科学和数学为三大基础支撑性学科,培养面向多层次应用需求的复合型人才。

大数据开设课程

数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践、离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析等。

大数据的学习阶段

第一阶段:大数据前沿知识及hadoop入门,大数据前言知识的介绍,课程的介绍,Linux和unbuntu系统基础,hadoop的单机和伪分布模式的安装配置。

第二阶段:hadoop部署进阶。Hadoop集群模式搭建,hadoop分布式文件系统HDFS深入剖析。使用HDFS提供的api进行HDFS文件操作。Maprece概念及思想。

第三阶段:大数据导入与存储。mysql数据库基础知识,hive的基本语法。hive的架构及设计原理。hive部署安装与案例。sqoop安装及使用。sqoop组件导入到hive。

第四阶段:Hbase理论与实战。Hbase简介。安装与配置。hbase的数据存储。项目实战。

第五阶段:Spaer配置及使用场景。scala基本语法。spark介绍及发展历史,spark stant a lone模式部署。sparkRDD详解。

第六阶段:spark大数据分析原理。spark内核,基本定义,spark任务调度。sparkstreaming实时流计算。sparkmllib机器学习。sparksql查询。

3. 大数据专业主要学什么

近两年来,互联网的发展迅速,相对应的带动了很多行业的发展,大数据作为新兴行业之一,半年来的人才需求在也是居高不下。

通过持续的观察前程无忧与智联招聘需求,在2016年6月大数据相关职位需求量,北京为21,511+个,稳居榜首,职位量占比高达25.1%,上海与深圳虽然拿下第二与第三,但是数量相差甚远。前十名也全部都是一二线城市,由此可以得出,大数据的发展,当前最活跃于偏向于发达的一线城市以及沿海地区。

从各行业发布的数量上来看,以计算机软件职位需求量最大,互联网/电子商务、IT服务/系统/数据/维护,紧随其后,并且三者相差不大,由此可以看出,计算机、互联网、IT类的职位需求的空缺一直很大,对于很多求职者而言,这是一个非常大的机遇。排名前四的与第五的数据相差很大,一方面是传统岗位数量的饱和,另一方面也就是新兴行业人才的稀缺。同时已经可以看出大数据在咨询、房地产、教育等行业的应用已经出现一个小的趋势,未来这些行业或将出现巨大的需求(或许这以一切的数据现象反映了当前国内的经济现状)。

从薪资水平上来看,5-8K是起步,20K以上的在2015年仅占2.4%,而在2016年却是增长到了21.5%%,由此可以看出,大数据其实也就是这一年始真正的发展。不论是平均最高月薪还是平均最低月薪,2016年在2015年的基础上都有明显的增长。平均月薪的增长意味着大数据进入了越来越多人的视线,专业人才难求,平均月薪疯长,大数据不火都不行。

目前大数据培训相对其他培训项目要好就业,因为其他语言还是技能培训都是有一定的市场基础的,而大数据在最近两年才大力发展,并且在各领域蔓延,因此所产生的人才缺口巨大,而在企业中真正对大数据技能比较强力的技术人才,又特别的少;

应用越来越广,技术人才却产生较慢,刚培训的人员,只能适应基本的软件操作和理论基础;还达不到企业要完成复杂业务的技术需求;所以培训入门快,拿薪资快,但只是一时,进入企业,不努力学习是跟不上发展与用人需求的。

大数据就业方向

大数据领域有三个大的技术方向,这些不同的技术方向,对应企业的哪些招聘岗位?

大数据技术与应用专业市场需求旺盛,对应岗位有大数据开发工程师、爬虫工程师、数据分析师、数据科学家、数据挖掘工程师、机器学习工程师等;

大数据入门月薪已经达到了8K以上,工作1年月薪可达到1.2W以上,具有2-3年工作经验的人才年薪可以达到30万—50万,一般需要大数据处理的公司基本上都是大公司,所以学习大数据专业也是进大公司的捷径。

1. Hadoop大数据开发方向市场需求旺盛,大数据培训的主体,目前IT培训机构的重点对应岗位:大数据开发工程师、爬虫工程师、数据分析师等2. 数据挖掘、数据分析&机器学习方向学习起点高、难度大,市面上只有很少的培训机构在做。对应岗位:数据科学家、数据挖掘工程师、机器学习工程师等3. 大数据运维&云计算方向市场需求中等,更偏向于Linux、云计算学科对应岗位:大数据运维工程师

当下,大数据的趋势已逐步从概念走向落地,而在IT人跟随大数据浪潮的转型中,各大企业对大数据高端人才的需求也越来越紧迫。这一趋势,也给想要从事大数据方面工作的人员提供了难得的职业机遇。

4. 大数据专业主要学什么

大数据技术专业以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等。

大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。

以中国人民大学为例:

基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。

必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。

选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。

大数据专业就业方向

1、数据工程方向毕业生能够从事基于计算机、移动互联网、电子信息、电子商务技术、电子金融、电子政务、军事等领域的Java大数据分布式程序开发、大数据集成平台的应用、开发等方面的高级技术人才,可在政府机关、房地产、银行、金融、移动互联网等领域从事各类Java大数据分布式开发、基于大数据平台的程序开发、数据可视化等相关工作,也可在IT领域从事计算机应用工作。

2、数据分析方向毕业生能够从事基于计算机、移动互联网、电子信息、电子商务技术、电子金融、电子政务、军事等领域的大数据平台运维、流计算核心技术等方面的高级技术人才,可在政府机关、房地产、银行、金融、移动互联网等领域从事各类大数据平台运维、大数据分析、大数据挖掘等相关工作,也可在IT领域从事计算机应用工作。

5. 大数据专业主要学什么知识

当前大数据技术有java大数据和Python大数据最最为流行,然后要学习的有Linux Shell、hadoop(HDFS、yam等)、ZooKeeper、Flume、Kafka、Hive、Sqoop、Azkaban、HBase、Scala、Flink、Redis、MySql、数据仓库(分为离线和实时),当然Sql编写能力要多加多加练习,增强经验,数据开发的岗位薪资待遇都是挺不错的,当然也可以有其他岗位可以选择,比如运维、数据分析、数据治理、数仓架构等岗位,实在不行去做数据标注吧,哈哈

6. 学大数据需要具备什么基础

说到大数据,肯定少不了分析软件,这应该是大数据工作的根基,但市面上很多各种分析软件,如果不是过来人,真的很难找到适合自己或符合企业要求的。小编通过各大企业对大数据相关行业的岗位要求,总结了以下几点:
(1)SQL数据库的基本操作,会基本的数据管理
(2)会用Excel/SQL做基本的数据分析和展示
(3)会用脚本语言进行数据分析,Python or R
(4)有获取外部数据的能力,如爬虫
(5)会基本的数据可视化技能,能撰写数据报告
(6)熟悉常用的数据挖掘算法:回归分析、决策树、随机森林、支持向量机等
对于学习大数据,总体来说,先学基础,再学理论,最后是工具。基本上,每一门语言的学习都是要按照这个顺序来的。
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。
3、学习数据分析工具,软件结合案列的实际应用,关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,stata,R,Python,SAS等。
4、学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
当然,学习数学与应用数学、统计学、计算机科学与技术等理工科专业的人确实比文科生有着客观的优势,但能力大于专业,兴趣才会决定你走得有多远。毕竟数据分析不像编程那样,需要你天天敲代码,要学习好多的编程语言,数据分析更注重的是你的实操和业务能力。如今的软件学习都是非常简单便捷的,我们真正需要提升的是自己的逻辑思维能力,以及敏锐的洞察能力,还得有良好的沟通表述能力。这些都是和自身的努力有关,而不是单纯凭借理工科背景就可以啃得下来的。相反这些能力更加倾向于文科生,毕竟好奇心、创造力也是一个人不可或缺的。

7. 大数据学习需要哪些课程

(1)统计学:参数检验、非参检验、回归分析等。

(2)数学:线性代数、微积分等。

(3)社会学:主要是一些社会学量化统计的知识,如问卷调查与统计分析;还有就是一些社会学的知识,这些对于从事营销类的数据分析人员比较有帮助。

(4)经济金融:如果是从事这个行业的数据分析人员,经济金融知识是必须的。

(5)计算机:从事数据分析工作的人必须了解你使用的数据是怎么处理出来的,要了解数据库的结构和基本原理,同时如果条件充足的话,你还能有足够的能力从数据库里提取你需要的数据(比如使用SQL进行查询),这种提取数据分析原材料的能力是每个数据从业者必备的。

此外,如果要想走的更远,还要能掌握一些编程能力,从而借住一些专业的数据分析工具,帮助你完成工作。

扩展材料:

大数据(bigdata),指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。

大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。

大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。

8. 大数据需要学什么

数据仓库东西HIVE;大数据离线剖析Spark、Python言语;数据实时剖析Storm等都是学习大数据需要了解和掌握的。
大数据(bigdata),或称巨量资料,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样捷径,而采用所有数据进行分析处理。大数据归纳有五大特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(低价值密度)、Veracity(真实性)。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换而言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。

阅读全文

与转大数据要学哪些东西相关的资料

热点内容
如何辨别酒水代理商 浏览:203
技术服务承诺书什么时候签 浏览:449
智慧水务信息化怎么解决 浏览:235
有一款产品应该怎么卖 浏览:15
如何进行建设工程信息化管理 浏览:997
为什么程序什么都输出不了 浏览:788
满25岁学什么技术好 浏览:252
佳炎光电技术怎么样 浏览:620
青岛满2年不满5年的房子怎么交易 浏览:538
程序放在哪个存储区 浏览:857
光电信息科学与工程要考什么证 浏览:827
漳州有哪些市菜市场 浏览:238
交通运输市场怎么样 浏览:538
如何在交易所交易点券 浏览:171
孩子学习美发有哪些技术 浏览:743
汉口白马服装批发市场怎么去 浏览:495
一个产品怎么拍摄视频 浏览:644
软件开发跟程序员哪个好 浏览:454
数据营销渠道有哪些 浏览:358
湖北省市场部九十九部是什么 浏览:928