❶ 各个大数据网站当前的技术热点是什么技术热点的名称和特点是什么。
技术热点是云网络,5G智能。分别是IoT领域,Shared-Everything架构,Learned based优化,特点就是能够更加方便,快捷,智能的整合信息,数据,让生活变得更美好,甚至可以让智能机器人帮助我们完成智能生活家居工作的一部分。
大数据(big data)是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。大数据有大量(Volume)、高速(Velocity)、多样(Variety)、低价值密度(Value)、真实性(Veracity)五大特点。它并没有统计学的抽样方法,只是观察和追踪发生的事情。大数据的用法倾向于预测分析、用户行为分析或某些其他高级数据分析方法的使用。
❷ 听说大数据是目前数据库发展的热点,什么是大数据啊国内有提供这方面服务的企业吗
根据IDC的研究结果,2011年创造的信息数量达到1800EB,每年产生的数字信息量还在以60%的速度高速增长,到2020年,全球每年产生的数字信息将达到35ZB。大数据的急剧蔓延使得企业在存储架构方面逐渐面临着史无前例的考验,它给IT企业带来了颠覆性的改革。愈来愈庞大的数据量不断推动着数据库管理技术的升级提高。为了挖掘庞大数据量中的价值,用户对数据库的要求不再是简单的存储,如何从海量数据中提取有用的信息、并快速准确的反映出来成为用户新需求。由此引发了数据仓库、数据挖掘、商业智能、云计算等应用的一系列连锁反应。听说国内人大金仓公司能提供以数据为核心的整体解决方案,能够为用户解决海量信息存储、分析、处理及应用等方面的问题。
❸ 大数据的关键技术有哪些
预测分析:预测分析是一种统计或数据挖掘解决方案,包含可在结构化和非结构化数据中使用以确定未来结果的算法和技术。可为预测、优化、预报和模拟等许多其他用途而部署。
NoSQL数据库:非关系型数据库包括Key-value型(Redis)数据库、文档型(MonogoDB)数据库、图型(Neo4j)数据库;虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的成熟、稳定。
搜索和认知商业:当今时代大数据与分析已经发展到一个新的高度,那就是认知时代,认知时代不再是简单的数据分析与展示,它更多的是上升到一个利用数据来支撑人机交互的一种模式。
流式分析:目前流式计算是业界研究的一个热点,最近Twitter、LinkedIn等公司相继开源了流式计算系统Storm、Kafka等,加上Yahoo!之前开源的S4,流式计算研究在互联网领域持续升温,流式分析可以对多个高吞吐量的数据源进行实时的清洗、聚合和分析;对存在于社交网站、博客、电子邮件、视频、新闻、电话记录、传输数据、电子感应器之中的数字格式的信息流进行快速处理并反馈的需求。目前大数据流分析平台有很多、如开源的spark,以及ibm的 streams 。
内存数据结构:通过动态随机内存访问(DRAM)、Flash和SSD等分布式存储系统提供海量数据的低延时访问和处理;
❹ 大数据关键技术有哪些
大数据关键技术涵盖数据存储、处理、应用等多方面的技术,根据大数据的处理过程,可将其分为大数据采集、大数据预处理、大数据存储及管理、大数据处理、大数据分析及挖掘、大数据展示等。
1、大数据采集技术
大数据采集技术是指通过 RFID 数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得各种类型的结构化、半结构化及非结构化的海量数据。
因为数据源多种多样,数据量大,产生速度快,所以大数据采集技术也面临着许多技术挑战,必须保证数据采集的可靠性和高效性,还要避免重复数据。
2、大数据预处理技术
大数据预处理技术主要是指完成对已接收数据的辨析、抽取、清洗、填补、平滑、合并、规格化及检查一致性等操作。
因获取的数据可能具有多种结构和类型,数据抽取的主要目的是将这些复杂的数据转化为单一的或者便于处理的结构,以达到快速分析处理的目的。
3、大数据存储及管理技术
大数据存储及管理的主要目的是用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。
4、大数据处理
大数据的应用类型很多,主要的处理模式可以分为流处理模式和批处理模式两种。批处理是先存储后处理,而流处理则是直接处理。
(4)数据库技术热点有哪些扩展阅读:
大数据无处不在,大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、体能和娱乐等在内的社会各行各业都已经融入了大数据的印迹。
1、制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
2、金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
3、汽车行业,利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
4、互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。
5、电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
❺ 大数据方面核心技术有哪些
简单来说,从大数据的生命周期来看,无外乎四个方面:大数据采集、大数据预处理、大数据存储、大数据分析,共同组成了大数据生命周期里最核心的技术,下面分开来说:
大数据采集
大数据采集,即对各种来源的结构化和非结构化海量数据,所进行的采集。
数据库采集:流行的有Sqoop和ETL,传统的关系型数据库MySQL和Oracle 也依然充当着许多企业的数据存储方式。当然了,目前对于开源的Kettle和Talend本身,也集成了大数据集成内容,可实现hdfs,hbase和主流Nosq数据库之间的数据同步和集成。
网络数据采集:一种借助网络爬虫或网站公开API,从网页获取非结构化或半结构化数据,并将其统一结构化为本地数据的数据采集方式。
文件采集:包括实时文件采集和处理技术flume、基于ELK的日志采集和增量采集等等。
大数据预处理
大数据预处理,指的是在进行数据分析之前,先对采集到的原始数据所进行的诸如“清洗、填补、平滑、合并、规格化、一致性检验”等一系列操作,旨在提高数据质量,为后期分析工作奠定基础。数据预处理主要包括四个部分:数据清理、数据集成、数据转换、数据规约。
数据清理:指利用ETL等清洗工具,对有遗漏数据(缺少感兴趣的属性)、噪音数据(数据中存在着错误、或偏离期望值的数据)、不一致数据进行处理。
数据集成:是指将不同数据源中的数据,合并存放到统一数据库的,存储方法,着重解决三个问题:模式匹配、数据冗余、数据值冲突检测与处理。
数据转换:是指对所抽取出来的数据中存在的不一致,进行处理的过程。它同时包含了数据清洗的工作,即根据业务规则对异常数据进行清洗,以保证后续分析结果准确性。
数据规约:是指在最大限度保持数据原貌的基础上,最大限度精简数据量,以得到较小数据集的操作,包括:数据方聚集、维规约、数据压缩、数值规约、概念分层等。
大数据存储,指用存储器,以数据库的形式,存储采集到的数据的过程,包含三种典型路线:
1、基于MPP架构的新型数据库集群
采用Shared Nothing架构,结合MPP架构的高效分布式计算模式,通过列存储、粗粒度索引等多项大数据处理技术,重点面向行业大数据所展开的数据存储方式。具有低成本、高性能、高扩展性等特点,在企业分析类应用领域有着广泛的应用。
较之传统数据库,其基于MPP产品的PB级数据分析能力,有着显着的优越性。自然,MPP数据库,也成为了企业新一代数据仓库的最佳选择。
2、基于Hadoop的技术扩展和封装
基于Hadoop的技术扩展和封装,是针对传统关系型数据库难以处理的数据和场景(针对非结构化数据的存储和计算等),利用Hadoop开源优势及相关特性(善于处理非结构、半结构化数据、复杂的ETL流程、复杂的数据挖掘和计算模型等),衍生出相关大数据技术的过程。
伴随着技术进步,其应用场景也将逐步扩大,目前最为典型的应用场景:通过扩展和封装 Hadoop来实现对互联网大数据存储、分析的支撑,其中涉及了几十种NoSQL技术。
3、大数据一体机
这是一种专为大数据的分析处理而设计的软、硬件结合的产品。它由一组集成的服务器、存储设备、操作系统、数据库管理系统,以及为数据查询、处理、分析而预安装和优化的软件组成,具有良好的稳定性和纵向扩展性。
四、大数据分析挖掘
从可视化分析、数据挖掘算法、预测性分析、语义引擎、数据质量管理等方面,对杂乱无章的数据,进行萃取、提炼和分析的过程。
1、可视化分析
可视化分析,指借助图形化手段,清晰并有效传达与沟通信息的分析手段。主要应用于海量数据关联分析,即借助可视化数据分析平台,对分散异构数据进行关联分析,并做出完整分析图表的过程。
具有简单明了、清晰直观、易于接受的特点。
2、数据挖掘算法
数据挖掘算法,即通过创建数据挖掘模型,而对数据进行试探和计算的,数据分析手段。它是大数据分析的理论核心。
数据挖掘算法多种多样,且不同算法因基于不同的数据类型和格式,会呈现出不同的数据特点。但一般来讲,创建模型的过程却是相似的,即首先分析用户提供的数据,然后针对特定类型的模式和趋势进行查找,并用分析结果定义创建挖掘模型的最佳参数,并将这些参数应用于整个数据集,以提取可行模式和详细统计信息。
3、预测性分析
预测性分析,是大数据分析最重要的应用领域之一,通过结合多种高级分析功能(特别统计分析、预测建模、数据挖掘、文本分析、实体分析、优化、实时评分、机器学习等),达到预测不确定事件的目的。
帮助分用户析结构化和非结构化数据中的趋势、模式和关系,并运用这些指标来预测将来事件,为采取措施提供依据。
4、语义引擎
语义引擎,指通过为已有数据添加语义的操作,提高用户互联网搜索体验。
5、数据质量管理
指对数据全生命周期的每个阶段(计划、获取、存储、共享、维护、应用、消亡等)中可能引发的各类数据质量问题,进行识别、度量、监控、预警等操作,以提高数据质量的一系列管理活动。
以上是从大的方面来讲,具体来说大数据的框架技术有很多,这里列举其中一些:
文件存储:Hadoop HDFS、Tachyon、KFS
离线计算:Hadoop MapRece、Spark
流式、实时计算:Storm、Spark Streaming、S4、Heron
K-V、NOSQL数据库:HBase、Redis、MongoDB
资源管理:YARN、Mesos
日志收集:Flume、Scribe、Logstash、Kibana
消息系统:Kafka、StormMQ、ZeroMQ、RabbitMQ
查询分析:Hive、Impala、Pig、Presto、Phoenix、SparkSQL、Drill、Flink、Kylin、Druid
分布式协调服务:Zookeeper
集群管理与监控:Ambari、Ganglia、Nagios、Cloudera Manager
数据挖掘、机器学习:Mahout、Spark MLLib
数据同步:Sqoop
任务调度:Oozie
❻ 什么数据库比较热门
总体来说,主流数据库并不存在明确的好坏之分,每一种数据库都有各自的优缺点,最主要还是看它是否能够满足您的需求。
总的来说,选择数据库可以从以下角度考虑:
从个人角度出发的话,如果是以学习和小型业务需求为主,推荐使用MySQL,它的优势在于:
成本(免费)
自由(完全开源,适用多个场景)
性能(体积小但速度快)
这三点决定了MySQL数据库的超高性价比。并且目前有不少主流公司仍然青睐MySQL,大名鼎鼎的Fackbook就依然在延续MySQL的使用。
2. 如果是企业角度出发,主流的大型数据库如Oracle、Sql Server...以及近些年来大数据领域十分火热的非关系型数据库,例如Redis、HBse等等,都可以作为考虑的对象。
接下来具体列举一些常用数据库的优缺点,希望能为大家提供参考:
MySQL:
优势:
MySQL是开放源代码的数据库,任何人都可以获得该数据库的源代码。
MySQL能够实现跨平台操作,可以在Windows、UNIX、Linux和Mac OS等操作系统上运行。
MySQL数据库是一款自由软件,大部分应用场景下都是免费使用。
MySQL功能强大且使用方便,社区生态繁荣,有诸多学习资料。
缺点:规模小,功能有限。
SQL Server
高度可扩展:可以从单一的笔记本电脑上运行任何东西或以高倍云服务器网络运行,或在两者之间任何东西。
“虽然说是“任何东西”,但是仍然要满足相关的软件和硬件的要求“
生态链广:具有内置的商务智能工具,以及一系列的分析和报告工具,可以创建数据库、备份、复制,带来了更好的安全性。
Oracle
Oracle数据库系统是目前世界上流行的关系数据库管理系统,具有以下特点:
可移植性好(在各类大、中、小、微机环境中都适用)
使用方便、
功能强
因此,Oracle是一种高效率、可靠性好的、适应高吞吐量的数据库解决方案。
DB2
DB2是IBM开发的一种大型关系型数据库平台。它支持多用户或应用程序在同一条SQL 语句中查询不同database甚至不同DBMS中的数据。它的应用特点如下:
支持面向对象的编程:db2支持复杂的数据结构,如无结构文本对象,可以对无结构文本对象进行布尔匹配、最接近匹配和任意匹配等搜索。可以建立用户数据类型和用户自定义函数。
支持多媒体应用程序:db2支持大二分对象(blob),允许在数据库中存取二进制大对象和文本大对象。其中,二进制大对象可以用来存储多媒体对象。
具有良好的备份和恢复能力
支持存储过程和触发器,用户可以在建表时显示的定义复杂的完整性规则
支持异构分布式数据库访问,支持数据复制
PostgreSQL
PostgreSQL 是一个免费的对象-关系数据库服务器(ORDBMS),它的 Slogan 是 “世界上最先进的开源关系型数据库”。
PostgreSQL具有如下特征:
函数:通过函数,可以在数据库服务器端执行指令程序。
索引:用户可以自定义索引方法,或使用内置的 B 树,哈希表与 GiST 索引。
触发器:触发器是由SQL语句查询所触发的事件。如:一个INSERT语句可能触发一个检查数据完整性的触发器。触发器通常由INSERT或UPDATE语句触发。 多版本并发控制:PostgreSQL使用多版本并发控制(MVCC,Multiversion concurrency control)系统进行并发控制,该系统向每个用户提供了一个数据库的”快照”,用户在事务内所作的每个修改,对于其他的用户都不可见,直到该事务成功提交。
规则:规则(RULE)允许一个查询能被重写,通常用来实现对视图(VIEW)的操作,如插入(INSERT)、更新(UPDATE)、删除(DELETE)。
数据类型:包括文本、任意精度的数值数组、JSON 数据、枚举类型、XML 数据等。
全文检索:通过 Tsearch2 或 OpenFTS,8.3版本中内嵌 Tsearch2。
NoSQL:JSON,JSONB,XML,HStore 原生支持,至 NoSQL 数据库的外部数据包装器。
数据仓库:能平滑迁移至同属 PostgreSQL 生态的 GreenPlum,DeepGreen,HAWK 等,使用 FDW 进行 ETL
❼ 数据库技术的应用领域有哪些
数据库的基本概念和应用领域x0dx0a简单地说,可以把数据库定义为数据的集合,或者说数据库就是为了实现一定的目的而按某种规则组织起来的数据的集合。数据库管理系统就是管理数据库的系统,即对数据库执行一定的管理操作。目前使用的数据库一般都是关系数据库管理系统(RDBMS)。它可以从下面3个方面来定义。x0dx0ax0dx0a ● 关系(R):它表示一种特殊种类的数据库管理系统,即通过寻找相互之间的共同元素使存放在一个表中的信息关联到存放在另一个表中的信息。x0dx0ax0dx0a ● 管理系统(MS):是允许通过插入、检索、修改或删除记录来使用数据的软件。x0dx0ax0dx0a ● 数据库:数据库管理系统由一个互相关联的数据集合和一组用以访问这些数据的程序组成,这个数据集合通常被称为数据库(DataBase)。x0dx0ax0dx0a数据库是存储信息的仓库,以一种简单、规则的方式进行组织。它具有以下4个特点:x0dx0ax0dx0a ● 数据库中的数据集组织为表。x0dx0ax0dx0a ● 每个表由行和列组成。x0dx0ax0dx0a ● 表中每行为一个记录。x0dx0ax0dx0a ● 记录可包含几段信息,表中每一列对应这些信息中的一段。x0dx0ax0dx0a数据库的应用领域非常广泛,不管是家庭、公司或大型企业,还是政府部门,都需要使用数据库来存储数据信息。传统数据库中的很大一部分用于商务领域,如证券行业、银行、销售部门、医院、公司或企业单位,以及国家政府部门、国防军工领域、科技发展领域等。x0dx0ax0dx0a随着信息时代的发展,数据库也相应产生了一些新的应用领域。主要表现在下面6个方面。x0dx0ax0dx0a1.多媒体数据库x0dx0ax0dx0a这类数据库主要存储与多媒体相关的数据,如声音、图像和视频等数据。多媒体数据最大的特点是数据连续,而且数据量比较大,存储需要的空间较大。x0dx0ax0dx0a2.移动数据库x0dx0ax0dx0a该类数据库是在移动计算机系统上发展起来的,如笔记本电脑、掌上计算机等。该数据库最大的特点是通过无线数字通信网络传输的。移动数据库可以随时随地地获取和访问数据,为一些商务应用和一些紧急情况带来了很大的便利。x0dx0ax0dx0a3.空间数据库x0dx0ax0dx0a这类数据库目前发展比较迅速。它主要包括地理信息数据库(又称为地理信息系统,即GIS)和计算机辅助设计(CAD)数据库。其中地理信息数据库一般存储与地图相关的信息数据;计算机辅助设计数据库一般存储设计信息的空间数据库,如机械、集成电路以及电子设备设计图等。x0dx0ax0dx0a4.信息检索系统x0dx0ax0dx0a信息检索就是根据用户输入的信息,从数据库中查找相关的文档或信息,并把查找的信息反馈给用户。信息检索领域和数据库是同步发展的,它是一种典型的联机文档管理系统或者联机图书目录。x0dx0ax0dx0a5.分布式信息检索x0dx0ax0dx0a这类数据库是随着Internet的发展而产生的数据库。它一般用于因特网及远距离计算机网络系统中。特别是随着电子商务的发展,这类数据库发展更加迅猛。许多网络用户(如个人、公司或企业等)在自己的计算机中存储信息,同时希望通过网络使用发送电子邮件、文件传输、远程登录方式和别人共享这些信息。分布式信息检索满足了这一要求。x0dx0ax0dx0a6.专家决策系统x0dx0ax0dx0a专家决策系统也是数据库应用的一部分。由于越来越多的数据可以联机获取,特别是企业通过这些数据可以对企业的发展作出更好的决策,以使企业更好地运行。由于人工智能的发展,使得专家决策系统的应用更加广泛。
❽ 数据库技术的发展趋势
数据库技术的发展趋势:
根据数据库应用及多家分析机构的评估,数据库技术发展将以应用为导向,面向业务服务,并与计算机网络和人工智能等技术结合,为新型应用提供多种支持。
(1)云数据库和混合数据快速发展
云数据库(Cloud Database)简称为云库, 是在云计算环境中部署和虚拟化的数据库。将各种关系型数据库看成一系列简单的二维表,并基于简化版本的SQL或访问对象进行操作。使传统关系型数据库通过提交一个有效地链接字符串即可加入云数据库,云数据库可解决数据集中更广泛的异地资源共享问题。
(2)数据集成与数据仓库
数据仓库(Data Warehouse)是面向主题、集成、相对稳定、反映历史变化的数据集合,是决策支持系统和联机分析应用数据源的结构化数据环境。主要侧重对机构历史数据的综合分析利用,找出对企业发展有价值的信息,以提供决策支持,帮助提高效益。其特征是面向主题、集成性、稳定性和时变性。新一代数据库使数据集成和数据仓库的实施更简单。数据应用逐步过渡到数据服务,开始注重处理:关系型与非关系型数据的融合、分类、国际化多语言数据。
(3)主数据管理和商务智能
在企事业机构内部业务应用整合和系统互联中,许多机构具有相同业务语义的数据被多次反复定义和存储,导致数据大量冗余成为IT环境发展的障碍,为了有效使用和管理这些数据,主数据管理已经成为一个新的热点。
商务智能(Business Intelligence)是指利用数据仓库及数据挖掘技术对业务数据分析处理并提供决策信息和报告,促进企业利用现代信息技术收集、管理和分析商务数据,改善决策水平,提升绩效,增强综合竞争力的智慧和能力。是企业利用现代信息技术收集、管理和分析商务数据和信息,创造和累计商务知识和见解,改善商务决策水平,采取有效的商务行动,完善各种商务流程,提升各方面商务绩效,增强综合竞争力的智慧和能力。融合了先进信息技术与创新管理理念的结合体,集成企业内外的数据,加工并从中提取能够创造商业价值的信息,面向企业战略并服务于管理层。
(4)“大数据”促进新型数据库
进入“大数据时代”,大数据量、高并发、分布式和实时性的需求,由于传统的数据库技术的数据模型和预定义的操作模式,时常难以满足实际需求,致使新型数据库在大数据的场景下,将取代传统数据库成为主导。
(5)基于网络的自动化管理
网络数据库应用系统的广泛应用,使数据库管理更加自动化。如网购、网银等系统,从企业级Enterprise-class到世界级World-class的转变,提供更多基于Internet环境的管理工具,完成数据库管理网络化。应用程序编程接口API(Application ProgrammingInterface)更开放,基于浏览器端技术的管理套件,便于分布远程管理。
(6)PHP将促进数据库产品应用
随着新一代Web技术的广泛应用,在.NET和Java成为数据应用的主体开发平台后,很多厂商为了争取市场在新版本数据库产品推出后,提供面向超级文本预处理语言PHP(Hypertext Preprocessor)的专用驱动和应用。
(7)数据库将与业务语义的数据内容融合
数据库将更广泛地为用于“信息服务”。对新一代基于AJAX、MashUp、SNS等技术的创新应用,数据从集中于逻辑中心数据库,改为分布网络,为了给予技术支持,数据聚集及基于业务语义的数据内容融合也成为数据库发展的方向,不仅在商务智能领域不断加强对服务应用的支持,而且注重加强数据集成服务。
❾ 数据库技术的应用领域有哪些
1、多媒体数据库
这类数据库主要存储与多媒体相关的数据,如声音、图像和视频等数据。多媒体数据最大的特点是数据连续,而且数据量比较大,存储需要的空间较大。
2、移动数据库
该类数据库是在移动计算机系统上发展起来的,如笔记本电脑、掌上计算机等。该数据库最大的特点是通过无线数字通信网络传输的。移动数据库可以随时随地地获取和访问数据,为一些商务应用和一些紧急情况带来了很大的便利。
3、数据库技术在多媒体技术方面的应用。
相对比传统的数据库技术,这种结合了多媒体技术的数据库,以多媒体技术的优势使得数据界面的丰富化并对于两者结合所可能带来的相关技术问题给予了充分解决,相关数据库方面的安全性得到了很好的提高。
多媒体数据库设计中有很多问题需要解决:用户接口支持方面、数据库组织与存储方面、媒体种类增加方面信息的分布影响方面。
4、信息检索系统
信息检索就是根据用户输入的信息,从数据库中查找相关的文档或信息,并把查找的信息反馈给用户。信息检索领域和数据库是同步发展的,它是一种典型的联机文档管理系统或者联机图书目录。
5、分布式信息检索
这类数据库是随着Internet的发展而产生的数据库。它一般用于因特网及远距离计算机网络系统中。特别是随着电子商务的发展,这类数据库发展更加迅猛。
许多网络用户(如个人、公司或企业等)在自己的计算机中存储信息,同时希望通过网络使用发送电子邮件、文件传输、远程登录方式和别人共享这些信息。分布式信息检索满足了这一要求。