导航:首页 > 数据处理 > 如何学习商业数据分析

如何学习商业数据分析

发布时间:2022-12-22 15:19:38

数据分析需要掌握哪些知识

数学知识
对于初级数据分析师来说,则需要了解统计相关的基础性内容,公式计算,统计模型等。当你获得一份数据集时,需要先进行了解数据集的质量,进行描述统计。

而对于高级数据分析师,必须具备统计模型的能力,线性代数也要有一定的了解。分析工具
对于分析工具,SQL 是必须会的,还有要熟悉Excel数据透视表和公式的使用,另外,还要学会一个统计分析工具,SAS作为入门是比较好的,VBA 基本必备,SPSS/SAS/R 至少要熟练使用其中之一,其他分析工具(如 Matlab)可以视情况而定。编程语言
数据分析领域最热门的两大语言是 R 和 Python。涉及各类统计函数和工具的调用,R无疑有优势。但是大数据量的处理力不足,学习曲线比较陡峭。Python 适用性强,可以将分析的过程脚本化。所以,如果你想在这一领域有所发展,学习 Python 也是相当有必要的。

当然其他编程语言也是需要掌握的。要有独立把数据化为己用的能力, 这其中SQL 是最基本的,你必须会用 SQL 查询数据、会快速写程序分析数据。当然,编程技术不需要达到软件工程师的水平。要想更深入的分析问题你可能还会用到:Exploratory analysis skills、Optimization、Simulation、Machine Learning、Data Mining、Modeling 等。业务理解
对业务的理解是数据分析师工作的基础,数据的获取方案、指标的选取、还有最终结论的洞察,都依赖于数据分析师对业务本身的理解。

对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。逻辑思维
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。对于数据挖掘工程师,罗辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。数据可视化数据可视化主要借助于图形化手段,清晰有效地传达与沟通信息。听起来很高大上,其实包括的范围很广,做个 PPT 里边放上数据图表也可以算是数据可视化。

对于初级数据分析师,能用 Excel 和 PPT 做出基本的图表和报告,能清楚地展示数据,就达到目标了。对于稍高级的数据分析师,需要使用更有效的数据分析工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。协调沟通
数据分析师不仅需要具备破译数据的能力,也经常被要求向项目经理和部门主管提供有关某些数据点的建议,所以,你需要有较强的交流能力。

Ⅱ 商业数据分析有哪些步骤

1.数据收集


当我们在做数据分析时,第一步要解决的问题肯定就是数据源的问题。数据收集的渠道主要分为内部收集和外部收集。


2.数据清洗


清洗数据就是从采集出来的庞大数据量中,筛选出对解决问题有价值、有意义的数据。


3.数据对比


数据对比是数据分析的切入点。因为如果没参照物,数据就没有一个定量的评估标准。通常我们采用的对比方法为横向对比和纵向对比。


4.数据细分


数据对比中如果发现问题,为了从数据中寻找出问题,就需要对数据进行细分处理。


5.数据溯源


发现问题,解决问题,数据溯源就是为了从根本上解决问题,找出问题的原因,得到最终的解决方案。

Ⅲ 如何着手商业数据分析

商业分析的流程一般分为5个步骤

明确问题-拆解问题-安排工作任务-推进工作任务-输出分析报告

1、明确问题

首先在解决问题前,我们一定要知道问题到底是什么?这样我们就知道了后期工作的方向,避免了以后出现的没必要的争论。对于如何明确问题,可以用SMART法则来说明


S——Specific 具体明确的,不能将问题说得太抽象

比如小米手机想要卖的好,就不能简单的说成小米手机要做成让每个人都喜欢的产品,而是应该说成小米手机的出货量要达到去年的150%

M——Measurable 可衡量的,不管是问题的本身还是目标要量化出来

还是小米的例子,出货量达到到去年的150%,那么150%就是可以量化的标准

A——Action-oriented 行动导向 就是说明问题时,必须要有解决的方向

比如小米通过销售改进、加大市场推广、增强产品研发能力这三种方式使出货量要达到去年的150%。

R——Relevant 相关联的,行动与问题存在相关性

小米通过销售改进、加大市场推广、增强产品研发能力对提升出货量是有相关性的,不能说小米通过进入笔记本电脑领域的方式去增加手机的出货量,开发笔记本电脑这个产品线这个行动跟提升手机出货量没有任何关联

T——Time-bound 时间限制

计划使出货量增加到去年的150%,可能过了两年手机的出货量也没有提升到150%,所以明确时间尤其重要 ,比如我计划用8个月的时间使手机出货量达到去年的150%。当然,时间的限定一定要从实际情况出发,要具备一定的合理性

2、拆分问题

拆分问题需要用到逻辑树模型

逻辑树分析模型顾名思义,就是把一个已知明确的问题作为树干,分析哪些问题跟这个问题有关,把相关的问题作为树枝加入到树干当中,由此不断向下拓展,就会将问题拓展成一个逻辑树

使用逻辑树模型的优点:

● 保证了解决问题的完整性

● 理清了所有的思路

● 避免了重复和无关的思考

除此之外,还有2个法则能更好的帮你理清思路,分别是MECE分析法和二八法则

MECE分析法即把一个工作项目分解为若干个更细的工作任务的方法

它主要有两条原则:

完整性

分解工作的过程中不要漏掉某项,要保证完整性

比如市场推广和提升产品研发能力就是2个不同的解决问题方向,漏掉某一项都会使解决问题的方向不完整

独立性

每项工作之间要独立,每项工作之间不要有交叉重叠

比如小米手机想要增加出货量可以提升产品研发能力和把手机设计得更好看,那么这2个子问题就重合了,因为产品研发能力包含了手机设计能力

二八法则,通俗理解就是在任何一组东西中,最重要的只占其中一小部分,约20%,其余80%尽管是多数,却是次要的

逻辑树分析模型中也是一样,要时刻关注重点问题,对于一些非重点的问题舍弃掉,减少工作量的同时集中力量解决重点问题

3、安排工作任务

将相互关系紧密的问题作为一个独立项目-确定项目负责人和工作推进计划表;特别是重要节点-负责人不时检查工作,按计划推进工作

4、推进执行任务

既然是商业分析,那么我们就要知道从哪几个维度去分析,以及如何获取有用的信息。明确这两个问题,我们就能很好的推进执行任务

3个分析维度

市场分析-竞争者分析-用户分析

以小米案例说明:

首先我们要了解整个手机市场的概况,对于手机市场的规模多大,供应链上下游的情况一一了解清楚,根据手机市场的环境来预测未来手机市场的发展趋势,做到快人一步

对于竞争者分析,我们要知道整个手机市场的几个大的玩家,以及他们的市场占有率是多少,还要具体分析每个竞争对手的概况和优劣势,包括渠道、供应链、产品等等方面。对于手机行业来说,苹果、华为、OPPO、vivo这几个大玩家是一定要仔细研究

最后是用户分析,要从用户属性、购买产品的决策等等因素上精准定位粉丝,了解用户需求,抓住用户痛点,帮助公司获取和留存用户。手机行业,OPPO和vivo因为渠道优势,对于目标人群的需求抓得非常精准

3种获取信息的方式

案头研究-用户调研-实地考察


案头研究,互联网时代,我们可以从网络获得相关新闻和一些专业的数据库,但是由于信息量极大,我们也要注意筛选出可靠准确的目标信息

用户调查可以分为线上调查和线下调查,线上我们可以通过网络/电话的形式调研,能得到大量的一手信息,但是不一定能得到你想要的全部信息。线下我们可以通过拜访的形式交流调研,线下调查能直接触达用户,了解到你想要的全部信息,但是时间经济成本太高

实地调研一般会和用户调查相结合,能得到一些隐藏但是非常重要的信息,当然,时间经济成本也是非常高

5、输出分析报告

这一步是整个商业分析过程的复盘总结,决定着你的分析结果是否能给企业做出正确的决策

一般来说,输出分析报告可以分为4个步骤

总体概要-整个商业分析的主要内容,包公整体的框架和逻辑

填充整理PPT信息-将信息填充到每个独立的项目,清楚解决问题的细节

沟通优化-内部沟通保证报告的完整性,用户沟通包含用户想要的信息

定稿汇报-对报告内容做到了然于胸,根据不同受众,报告称显得内容和形式不同。

Ⅳ 电子商务数据分析2怎样学

1、首先明确自己做数据分析的目的。
2、其次了解电商常见数据指标,熟悉业务流程。
3、最后学习电商行业成熟数据分析案例中的分析思路,化为己用。

Ⅳ 数据分析需要掌握些什么知识

主要是掌握数理统计。它以概率论为基础,以正态分布中的三大分布(卡方分布,f分布,学生氏t分布)为基石,建立起来的计算体系。

Ⅵ 怎么做商业数据分析

商业数据分析一般分为5个步骤:收集、清洗、对比、细分、溯源。

  1. 数据收集

当我们在做数据分析时,第一步要解决的问题肯定就是数据源的问题。Allen通常把数据分为二大类。第一类是直接能获取的数据,通常都是内部数据。无非就是从网站后台或者是自己家的数据库里面导。第二类就是外部数据,需要经过加工整理后得到的数据。

典型的数据来源有:网络指数、阿里指数、梅花网、cnzz等。

2. 数据清洗

清洗数据(筛选、清除、补充、纠正)的目的是从大量的、杂乱无章、难以理解的数据中抽取并推导出对解决问题有价值、有意义的数据。清洗后、保存下来真正有价值、有条理的数据,为后面做数据分析减少分析障碍。

3. 数据对比

对比,是数据分析的切入点。因为如果没参照物,数据就没有一个定量的评估标准。通常情况下我们从二个点去切入进行数据对比分析:1.横向对比 2.纵向对比

横向对比,与行业平均数据,与竞争对手的数据进行比对。举个粟子,比如你家的APP用户留存率是60%,而行业平均留存是70%或竞争对手的用户留存率是70%,那就说明你家的产品在留存率方面有待加强!

纵向对比,与自家产品的历史数据进行对比,围绕着时间轴来对比。还是用用户留存率来进行举粟子吧,比如,APP改版前30天,新用户留存率是70%的,而新版APP发布后,新用户留存率降了10%或者升了5%,这就产生了问题,到底是那些因素导致数据产生了异常呢?

4. 数据细分

数据对比发现了异常,我们当然想知道是什么原因导致的。这里就要用到数据细分了,数据细分通常情况下先分纬度,再分粒度。

何谓为纬度?按时间分类就是时间纬度,按地区分类就是地域纬度,按来路分类就是来源纬度,按受访页面分类就是受访纬度。今天APP访问量涨了5%,咋回事不知道,你细分一看,大部分网页都没涨,某个频道某个活动页涨了300%,这就清楚了,这就是细分最简单的范例,其实很多领域都通用。

粒度是什么?你时间纬度,是按照天,还是按照小时?这就是粒度差异,你来路纬度,是来路的网站,还是来路的url,这就是粒度的差异;纬度结合粒度进行细分,就可以将对比的差异值逐级锁定问题区域,就可以更容易地寻找出发生问题的原因了。

5.数据溯源

通常情况下,通过数据细分就能分析出大多数问题的原因并推导出结论了。但也有特殊的情况,即使具体到粒度了也得不出有说服力的结论。

这时候我们再进一步,通过数据溯源就能找出问题的原因。依据锁定的这个纬度和粒度作为搜索条件,查询所涉及的源日志,源记录,然后基于此分析和反思用户的行为,往往会有惊人的发现。

Ⅶ 如何学习成为一名数据分析师

学习数据分析师之前,你必须清楚自己想要达成什么目标。也就是说,你想通过这门技术来解决哪些问题或实现什么计划。有了这个目标,你才能清晰地开展自己的学习规划,并且明确它的知识体系。

Ⅷ 如何学习数据分析

第一方面是数学基础,第二方面是统计学基础,第三方面是计算机基础。要想在数据分析的道路上走得更远,一定要注重数学和统计学的学习。数据分析说到底就是寻找数据背后的规律,而寻找规律就需要具备算法的设计能力,所以数学和统计学对于数据分析是非常重要的。

而想要快速成为数据分析师,则可以从计算机知识开始学起,具体点就是从数据分析工具开始学起,然后在学习工具使用过程中,辅助算法以及行业致死的学习。学习数据分析工具往往从Excel工具开始学起,Excel是目前职场人比较常用的数据分析工具,通常在面对10万条以内的结构化数据时,Excel还是能够胜任的。对于大部分职场人来说,掌握Excel的数据分析功能能够应付大部分常见的数据分析场景。

在掌握Excel之后,接下来就应该进一步学习数据库的相关知识了,可以从关系型数据库开始学起,重点在于Sql语言。掌握数据库之后,数据分析能力会有一个较大幅度的提升,能够分析的数据量也会有明显的提升。如果采用数据库和BI工具进行结合,那么数据分析的结果会更加丰富,同时也会有一个比较直观的呈现界面。

数据分析的最后一步就需要学习编程语言了,目前学习Python语言是个不错的选择,Python语言在大数据分析领域有比较广泛的使用,而且Python语言自身比较简单易学,即使没有编程基础的人也能够学得会。通过Python来采用机器学习的方式实现数据分析是当前比较流行的数据分析方式。

对大数据分析有兴趣的小伙伴们,不妨先从看看大数据分析书籍开始入门!B站上有很多的大数据教学视频,从基础到高级的都有,还挺不错的,知识点讲的很细致,还有完整版的学习路线图。也可以自己去看看,下载学习试试。

Ⅸ 什么是数据分析如何学习数据分析

【导读】无论是从薪资待遇还是未来的发展前景,数据分析师都是屈指可数的稀缺人才,那么什么是数据分析?如何学习数据分析呢?下面跟着小编一起来分析一下吧!

什么是数据分析?

对于数据分析的概念,我们需要有一个深刻的理解。数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。

如何学习数据分析?

的确,兴趣能作为你学习下去的动力,但是后续不断地学习并掌握技能才是根本。小编以前特别喜欢吉他,于是就报了吉他班。弹吉他确实是一件很酷的事,但是学习过程却非常艰辛。我的手指尖经常因为弹吉他生成黄黄的老茧。有时候我甚至想要放弃,但是在老师和父母的监督下,我还是坚持了下来。

学习数据分析的过程何尝不是如此呢?想要实现梦想,就一定要付诸汗水。以下便是小编为小白们提的几点学习数据分析的建议~

1.浏览各大平台有关数据分析的论坛。

很多技术大牛在网络贴吧、知乎、B站、CSDN等平台都发布过自己的经验贴,积少成多的知识可以帮助我们少走很多弯路,从而更快地掌握知识。

2.运用数据集开启项目。

感兴趣的小伙伴可以点击下方链接康康小编推荐过的数据集~

3.掌握数据分析师的必备技能。

(1)Excel。很多人的电脑里都安装了Excel这款软件。在办公时,我们经常会用Excel制作表格。除此之外,Excel还是一款数据管理工具,可以用于数据的清理、分析和可视化。

(2)SQL。SQL是一种数据库查询和程序设计语言,用于存取数据以及查询、更新和管理关系数据库系统。

(3)Tableau等可视化软件。Tableau这一款可视化工具广泛运用于商业领域。并且,Tableau是一款自带教程的软件,省去了我们去别的平台找学习视频的时间。

以上就是小编今天给大家整理发送的关于“什么是数据分析?如何学习数据分析?”的相关内容,希望对大家有所帮助。小编认为要想在大数据行业有所建树,需要考取部分含金量高的数据分析师证书,这样更有核心竞争力与竞争资本。

阅读全文

与如何学习商业数据分析相关的资料

热点内容
如何辨别酒水代理商 浏览:203
技术服务承诺书什么时候签 浏览:449
智慧水务信息化怎么解决 浏览:235
有一款产品应该怎么卖 浏览:15
如何进行建设工程信息化管理 浏览:997
为什么程序什么都输出不了 浏览:788
满25岁学什么技术好 浏览:252
佳炎光电技术怎么样 浏览:620
青岛满2年不满5年的房子怎么交易 浏览:538
程序放在哪个存储区 浏览:857
光电信息科学与工程要考什么证 浏览:827
漳州有哪些市菜市场 浏览:238
交通运输市场怎么样 浏览:538
如何在交易所交易点券 浏览:171
孩子学习美发有哪些技术 浏览:743
汉口白马服装批发市场怎么去 浏览:495
一个产品怎么拍摄视频 浏览:644
软件开发跟程序员哪个好 浏览:454
数据营销渠道有哪些 浏览:358
湖北省市场部九十九部是什么 浏览:928