导航:首页 > 数据处理 > 如何分析数据清晰

如何分析数据清晰

发布时间:2022-12-22 01:33:27

Ⅰ 常用的数据分析方法有哪些


常见的数据分析方法有哪些?
1.趋势分析
当有大量数据时,我们希望更快,更方便地从数据中查找数据信息,这时我们需要使用图形功能。所谓的图形功能就是用EXCEl或其他绘图工具来绘制图形。
趋势分析通常用于长期跟踪核心指标,例如点击率,GMV和活跃用户数。通常,只制作一个简单的数据趋势图,但并不是分析数据趋势图。它必须像上面一样。数据具有那些趋势变化,无论是周期性的,是否存在拐点以及分析背后的原因,还是内部的或外部的。趋势分析的最佳输出是比率,有环比,同比和固定基数比。例如,2017年4月的GDP比3月增加了多少,这是环比关系,该环比关系反映了近期趋势的变化,但具有季节性影响。为了消除季节性因素的影响,引入了同比数据,例如:2017年4月的GDP与2016年4月相比增长了多少,这是同比数据。更好地理解固定基准比率,即固定某个基准点,例如,以2017年1月的数据为基准点,固定基准比率是2017年5月数据与该数据2017年1月之间的比较。
2.对比分析
水平对比度:水平对比度是与自己进行比较。最常见的数据指标是需要与目标值进行比较,以了解我们是否已完成目标;与上个月相比,要了解我们环比的增长情况。
纵向对比:简单来说,就是与其他对比。我们必须与竞争对手进行比较以了解我们在市场上的份额和地位。
许多人可能会说比较分析听起来很简单。让我举一个例子。有一个电子商务公司的登录页面。昨天的PV是5000。您如何看待此类数据?您不会有任何感觉。如果此签到页面的平均PV为10,000,则意味着昨天有一个主要问题。如果签到页面的平均PV为2000,则昨天有一个跳跃。数据只能通过比较才有意义。
3.象限分析
根据不同的数据,每个比较对象分为4个象限。如果将IQ和EQ划分,则可以将其划分为两个维度和四个象限,每个人都有自己的象限。一般来说,智商保证一个人的下限,情商提高一个人的上限。
说一个象限分析方法的例子,在实际工作中使用过:通常,p2p产品的注册用户由第三方渠道主导。如果您可以根据流量来源的质量和数量划分四个象限,然后选择一个固定的时间点,比较每个渠道的流量成本效果,则该质量可以用作保留的总金额的维度为标准。对于高质量和高数量的通道,继续增加引入高质量和低数量的通道,低质量和低数量的通过,低质量和高数量的尝试策略和要求,例如象限分析可以让我们比较和分析时间以获得非常直观和快速的结果。
4.交叉分析
比较分析包括水平和垂直比较。如果要同时比较水平和垂直方向,则可以使用交叉分析方法。交叉分析方法是从多个维度交叉显示数据,并从多个角度执行组合分析。
分析应用程序数据时,通常分为iOS和Android。
交叉分析的主要功能是从多个维度细分数据并找到最相关的维度,以探究数据更改的原因。

Ⅱ 怎么进行数据精准分析

1.首先需要收集客户的各种数据。比如客户的交易时间、交易次数、消费金额、主要购买产品等等,数据一定要真实并且准确,否则就没有任何意义。

2.将收集到的数据进行分析。通常是将客户分为有效客户和无效客户,有效客户通常指的是活跃和不活跃的客户,然后再将不活跃的客户进行下一步的细分,因为这一类的客户是最有可能再转化回活跃客户的。

3.通过分析获得了客户的分类,然后就需要对客户进行管理,建立有效的客户管理制度,定期进行检测,通过客户分析会、例会等讨论出客户活动的方案,有的放矢针对客户的情况进行下一步的营销。

4.除了用有效无效来分析客户,还需要通过客户所带来的价值来分析客户。也就是说那些能够为公司带来大利润的客户就是高价值客户,数量占少数,但是重要程度高,这部分客户通过分析应该是公司重点提供支持去维护的客户。

5.需要注意的是客户分析不是一成不变的,需要定期进行分析维护。因为随着生意的变化和外界环境的变化,客户本身就存在着变化,很有可能今天这个重点客户由于公司业务调整变得不再重要,那么这种情况就需要重新划分客户的等级。

Ⅲ 做数据分析如何保障数据的准确性

从业多年,在数据准确性上摔过不少跟斗,总结了一些切实有效的方法,能够帮你尽可能的规避错误,确保数据的准确性,分享给大家

对数据上游的管理

虽然看上去,数据分析师是掌握数据资源的人,但从数据的生产流程来看,数据分析师其实位于数据的下游,数据需要至少先经过采集环节、清洗环节、存储环节才能被数据分析师拿到,甚至有的体量特别大的数据,他的调取和处理环节也不能被数据分析师控制。所以,想要最终做出的数据不出错,那就要先确保我们的数据上游是准确的。

虽然数据上游一般是由其他业务或技术人员负责,但数据分析师也可以通过提需求或生产过程参与的方式,对数据上游进行管理:

设立数据“安检站”

“大包小包过机安检”只要你坐过北京的地铁,相信这句话一定耳熟能详,为了确保所有旅客不把易燃易爆等危险品带入地铁内危及他人安全,地铁在每个进站口设置安检站对所有过往人员物品进行检查。虽然避免数据错误的最主要方法就是检查,但全流程无休止的数据检查显然是费时费力且效率低的,我们其实也可以在数据流入流出的关键节点设立“安检站”,只在这个时候进行数据检查。

一般我会在这些地方设立“安检站”:

几种行之有效的检查方法:

确保数据准确的几个日常习惯

除了上述成体系的错误规避手段外,几个日常的好习惯也可以让我们尽可能的离错误远一点:

以上,是确保数据准确的大致经验总结,几句最关键的话再重复唠叨一下:

数据处理的准确性校验一直是个难题,是否存在一些针对据处理准确性的通用做法呢?


下面是一些对于数据进行计算处理后,保证数据准确性的个人实践:


对于大部分数据来说,数据处理可以分为以下 五个步骤


1.数据采集;2.数据传输(实时/批量);3.数据建模/存储;4.数据计算/分析;5.数据可视化展示/挖掘


针对上面五点分别展开介绍:


一、数据采集


通常数据处理之前会有数据采集的过程,数据采集会涉及到多数据来源,每中数据来源由于格式等不一致,需要特殊处理。


1.针对不通的数据源,需要做到每个数据源获取 数据能够独立。


2.采集过程需要监控,传输之前如有条件,可以做到本地有备份数据,便于异常查找时进行数据比对。


二、数据传输(实时/批量)


数据源本地已经做到有备份的情况下,对于传输异常的时候,需要 支持重试 ,存储端需要支持去重。


三、数据建模/存储


数据存储可以针对结果集合进行冗余分类存储,便于数据进行比对,针对存储需要进行副本备份,同时数据可以考虑按生效记录进行叠加存储,支持回溯 历史 的存储结构进行存储。


四、数据计算/分析/挖掘


数据进行计算,分析的时候需要进行步骤分解,便于准确性的分析和统计


1.计算之前,支持测算,同时支持数据进行分批计算,需要能导出本批次清单基础数据(例如人员或者id),便于数据核对。


2.计算之中,支持快速少量指定的典型数据测算,支持选择,是否存储参与计算过程的全部的中间变量。


3.计算之后,可以选择,支持导出本次计算过程中的所有参与变量和中间变量参数,可以线下根据数据列表对应的参数,进行计算,从而进行数据准确性的核对。


计算过程中,支持针对有问题的数据ID进行染色,染色后的数据,所有的中间过程变量全部进行打印输出。


五、数据可视化展示


可视化挖掘过程,需要主要前台图形化界面的数据量

Ⅳ 如何做数据分析

做数据分析:明确需求主要是与他人沟通与需求相关的一切内容,并清晰准确地理解和表达相关内容。

在需求沟通中,通过掌握需求的核心内容,可以减少反复沟通。需求的核心内容可以从分析目的、分析主体、分析口径、分析思路、完成时间五个方面来确定。此外,在沟通的过程中,可以适当提出自己的想法,让需求更加清晰立体。

数据分析

是指用适当的统计分析方法对收集来的大量数据进行分析,将它们加以汇总和理解并消化,以求最大化地开发数据的功能,发挥数据的作用。数据分析是为了提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。

数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。

Ⅳ 如何保证分析数据的准确性

数据的准确性无非就是两个方面:1、数据源本身准确无误;2、使用数据源的逻辑准确无误
1、对于数据源本身质量,由于数据分析师接触到的数据基本上是经过了数据清洗、数仓建模之后的数据,换言之,已经是加工后的数据,已经处于数据链的下游,所以数据准确性更多的是数仓层面保证,数据分析师要做的就是根据自己的业务sense对数据做核验,发现数据中是否有异常数据

2、对于计算逻辑,还可以分为数据表逻辑和清洗规则了解,以及自己算的指标准确性,具体来说:1)要清楚所用数据表的逻辑和清洗规则,保证取了对的数据;2)要保证自己的计算逻辑无误,比如数据是否可累加,保证自己算对了指标。

Ⅵ 如何进行数据分析

  1. 收集数据

数据分析师的工作第一步就是收集数据,如果是内部数据,可以用SQL进行取数,如果是要获取外部数据,数据的可靠真实性和全面性其实很难保证。

2. 数据清洗

数据清洗是整个数据分析过程中不可缺少的一个环节,其结果质量直接关系到模型效果和最终结论。在实际操作中,数据清洗通常会占据分析过程的50%—80%的时间。需要进行处理的数据大概分成以下几种:缺失值、重复值、异常值和数据类型有误的数据。

3. 数据可视化

是为了准确且高效、精简而全面地传递出数据带来的信息和知识。可视化能将不可见的数据现象转化为可见的图形符号,能将错综复杂、看起来没法解释和关联的数据,建立起联系和关联,发现规律和特征,获得更有商业价值的洞见和价值。在利用了合适的图表后,直截了当且清晰而直观地表达出来,实现了让数据说话的目的。

4. 数据方向建设和规划

不同行业和领域的侧重点是不同的,可以是商业策略,也可以是市场营销,是不固定的,要依据公司的战略发展走。

5. 数据报告展示

数据分析师作为业务与IT的桥梁,与业务的需求沟通是其实是数据分析师每日工作的重中之重。在明确了分析方向之后,能够让数据分析师的分析更有针对性。如果没和业务沟通好,数据分析师就开始撸起袖子干活了,往往会是白做了。最后结果的汇总体现也非常重要,不管是PPT、邮件还是监控看板,选择最合适的展示手段,将分析结果展示给业务团队。

Ⅶ 如何更好地对数据做分析

一、清楚数据分析目的


任何一件事在做之前都是有目的性的,数据分析也是如此,在进行数据分析之前首先要清楚为什么要做数据分析?


动摇说明型:某天的销售额忽然下降了,某天的新用户留存忽然下降了,这时候往往需求分析师去说明动摇的原因,分析较为聚焦,首要是找到动摇的原因。


数据复盘型:类似于月报、季报,在互联网范畴常见于app某某功用上线了一段时间后,数据分析师往往需求复盘一下这个功用的体现情况,看看有没有什么问题。


专题探求型:对某个主题建议的专项探求,比方新用户丢掉、营收分析等等。


二、数据获取


在清楚分析政策后,就可以依据政策去获取所需求的数据,数据获取首要可以分为三大类。


(1)通过一些依据前端页面的数据搜集东西获取;


(2)在产品规划过程中通过数据埋点的办法,在需求数据时可以进行简略提取,这种办法的条件是在产品规划阶段就现已对未来的数据获取提前做好了预备;


(3)假设前期没有进行功用埋点、可视化的搜集东西也无法获取数据时,找研制团队通过后台脚本或技能研制的办法获取数据。


三、数据处理


数据处理阶段首要做的作业是数据清洗、数据补全、数据整合。


四、数据分析


数据分析思路又名数据分析办法,数据分析必定是以目的为导向的,通过目的挑选数据分析的办法。


五、数据可视化


数据分析的目的是通过数据清楚的了解用户、产品和当前业务情况,然后得到有效的运营决策辅导下一步的开展。


怎么通过数据清楚了解用户、产品和业务情况?一行行单调的数字无法让业务部门或外部客户直观地了解数据背面的意义,所谓“一图胜千言”,咱们需求把数据进行可视化的展现。


六、总结与建议


数据分析陈述其实是对整个数据分析过程的一个总结与出现。通过对数据全方位的科学分析来点评企业运营质量,为决策者提供科学、谨慎的决策依据,以下降企业运营危险,前进企业中心竞争力。


关于如何更好地对数据做分析,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

Ⅷ 怎样对数据进行分析—数据分析的六大步骤

        时下的大数据时代与人工智能热潮,相信很多人都会对数据分析产生很多的兴趣,其实数据分析师是Datician的一种,指的是不同行业中,专门从事行业数据收集,整理,分析,并依据数据做出行业研究、评估和预测的专业人员。

        很多人学习过数据分析的知识,但是当真正接触到项目的时候却不知道怎样去分析了,导致这样的原因主要是没有属于自己的分析框架,没有一个合理的分析步骤。那么数据分析的步骤是什么呢?比较让大众认可的数据分析步骤分为

六大步骤。只有我们有合理的分析框架时,面对一个数据分析的项目就不会无从下手了。

        无论做什么事情,首先我们做的时明确目的,数据分析也不例外。在我们进行一个数据分析的项目时,首先我们要思考一下为什么要进展这个项目,进行数据分析要解决什么问题,只有明确数据分析的目的,才不会走错方向,否则得到的数据就没有什么指导意义。

        明确好数据分析目的,梳理分析思路,并搭建分析框架,把分析目的分解成若干不同的分析要点,即如何具体开展数据分析,需要从那几个角度进行分析,采用哪些分析指标(各类分析指标需合理搭配使用)。同时,确保分析框架的体系化和逻辑化,确定分析对象、分析方法、分析周期及预算,保证数据分析的结果符合此次分析的目的。

        数据收集的按照确定的数据分析框架,收集相关数据的过程,它为数据分析提供了素材和依据。常见的数据收集方式主要有以下几种

        一般地我们收集过来的数据都是杂乱无章的,没有什么规律可言的,所以就需要对采集到的数据进行加工处理,形成合适的数据样式,保证数据的一致性和有效性。一般在工作中数据处理会占用我们大部分的时间

        数据处理的基本目的是从大量的,杂乱无章的数据中抽取到对接下来数据分析有用的数据形式。常见的数据处理方式有 数据清洗、数据分组、数据检索、数据抽取 等,使用的工具有 Excel、SQL、Python、R 语言等。

        对数据整理完毕之后,就需要对数据进行综合的分析。数据分析方式主要是使用适当的分析方法和工具,对收集来的数据进行分析,提取有价值的信息,形成有效结论的过程。

        在确定数据分析思路的阶段,就需要对公司业务、产品和分析工具、模型等都有一定的了解,这样才能更好地驾驭数据,从容地进行分析和研究,常见的分析工具有 SPSS、SAS、Python、R语言 等,分析模型有 回归、分类、聚类、关联、预测 等。其实数据分析的重点不是采用什么分析工具和模型而是找到合适的分析工具和模型,从中发现数据中含有的规律。

        通过对数据的收集、整理、分析之后,隐藏的数据内部的关系和规律就会逐渐浮现出来,那么通过什么方式展现出这些关系和规律,才能让别人一目了然。一般情况下,是通过表格和图形的方式来呈现出来。多数情况下,人们通常愿意接受图形这样数据展现方式,因为它能更加有效、直观地传递出数据所要表达的观点。

        常用数据图表 有饼图、柱形图、条形图、折线图、气泡图、散点图、雷达图、矩阵图 等图形,在使用图形展现的情况下需要注意一下几点:

        当分析出来最终的结果之后,我们是知道这部分数据展现出来的意义,适用的场景。但是如果想让更多人了解你分析出来的东西,让你的分析成果为众人所熟知,这时就需要一份完美的PPT报告,一个逻辑合理的故事。这样的分析结果才是最完美的。

        一份好的数据分析报告,首先需要有一个好的分析框架,并且图文并茂,层次清晰,能够让阅读者一目了然。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象,直观地看清楚问题和结论,从而产生思考。

                                                           数据分析的四大误区

1、分析目的不明确,不能为了分析而分析 。只有明确目的才能更好的分析

2、缺乏对行业、公司业务的认知,分析结果偏离实际 。数据必须和业务结合才有意义,清楚所在行业的整体结构,对行业的上游和下游的经营情况有大致的了解,在根据业务当前的需要,制定发展计划,归类出需要整理的数据,同时,熟悉业务才能看到数据背后隐藏的信息。

3、为了方法而方法,为了工具而工具 。只要能解决问题的方法和工具就是好的方法和工具

4、数据本身是客观的,但被解读出来的数据是主观的 。同样的数据由不同的人分析很可能得出完全相反的结论,所以一定不能提前带着观点去分析

Ⅸ 怎样对数据进行分析

数据分析方法:

1、对比分析法

对比分析法是通过指标的对比来反映事物数量上的变化,属于统计分析中常用的方法。常见的对比有横向对比和纵向对比。利用对比分析法可以对数据规模大小、水平高低、速度快慢等做出有效的判断和评价。

2、分组分析法

分组分析法是根据数据的性质、特征,按照一定的指标,将数据总体划分为不同的部分,分析其内部结构和相互关系,从而了解事物的发展规律。根据指标的性质,分组分析法分为属性指标分组和数量指标分组。

所谓属性指标代表的是事物的性质、特征等,如姓名、性别、文化程度等,这些指标无法进行运算;而数据指标代表的数据能够进行运算,如人的年龄、工资收入等。分组分析法一般都和对比分析法结合使用。

3、预测分析法

预测分析法主要基于当前的数据,对未来的数据变化趋势进行判断和预测。

预测分析一般分为两种:一种是基于时间序列的预测,例如,依据以往的销售业绩,预测未来3个月的销售额;另一种是回归类预测,即根据指标之间相互影响的因果关系进行预测,例如,根据用户网页浏览行为,预测用户可能购买的商品。

4、漏斗分析法

漏斗分析法也叫流程分析法,它的主要目的是专注于某个事件在重要环节上的转化率,在互联网行业的应用较普遍。

比如,对于信用卡申请的流程,用户从浏览卡片信息,到填写信用卡资料、提交申请、银行审核与批卡,最后用户激活并使用信用卡,中间有很多重要的环节,每个环节的用户量都是越来越少的,从而形成一个漏斗。

使用漏斗分析法,能使业务方关注各个环节的转化率,并加以监控和管理,当某个环节的转换率发生异常时,可以有针对性地优化流程,采取适当的措施来提升业务指标。

5、AB测试分析法

AB测试分析法其实是一种对比分析法,但它侧重于对比A、B两组结构相似的样本,并基于样本指标值来分析各自的差异。

例如,对于某个App的同一功能,设计了不同的样式风格和页面布局,将两种风格的页面随机分配给使用者,最后根据用户在该页面的浏览转化率来评估不同样式的优劣,了解用户的喜好,从而进一步优化产品。

阅读全文

与如何分析数据清晰相关的资料

热点内容
迅捷查重基于什么数据库 浏览:987
代理办公家具需要哪些手续 浏览:463
金沙第二集贸市场直卖区卖什么好 浏览:739
什么是煤化工煤化工产品有哪些 浏览:310
三星自动同步数据在哪里设置 浏览:562
细莫食品怎么代理 浏览:570
广东米香型酒有哪些代理品牌 浏览:343
延庆区防水技术服务有什么 浏览:812
旋转小火锅市场如何 浏览:697
怎么用前端技术软件 浏览:128
怎么将小程序传到朋友圈 浏览:727
交易税如何提高免税 浏览:285
创造与魔法交易红马怎么交易 浏览:570
怎么回复微信的数据 浏览:838
护胃的电子产品有什么 浏览:87
传感器数据如何传输到阿里云 浏览:105
哪些产品是低热量 浏览:173
怎么下掉商品橱窗内的产品 浏览:259
wps数据图有哪些 浏览:699
农业产品交易app有哪些 浏览:671