导航:首页 > 数据处理 > 大数据利用什么造成社会资源浪费

大数据利用什么造成社会资源浪费

发布时间:2022-12-19 09:32:08

A. “大数据”要这样用才赚钱!

“大数据”要这样用才赚钱!

大数据的生意经其实很简单,就是收入增加,花费减少;就是增加客户,提高客户体验,提高资金回报的杠杆率;大数据应用成熟之后,大数据可以预测商业未来,发现新的商业机会。
一石激起千层浪,国务院发布的2015 第50号文《促进大数据发展行动纲要》刷满了朋友圈,特别是其中提到了大力推动政府部门数据共享,稳步推动公共数据资源开放。2017年底前形成跨部门数据资源共享格局,到2018年实现统一共享平台全覆盖和数据共享及交换。2020年培育10家国际领先的大数据核心龙头企业,500家大数据应用、服务和产品制造企业。
众所周知,大数据商业价值巨大。但是中国大数据的商业价值还没有被充分挖掘。主要的困难在大数据的分散,具有价值的数据大部分集中在在政府内部,垄断国企业,以及互联网巨头之中。分散的数据无法帮助企业拿到具有价值的信息,无法实现大数据的商业变现。政府开放数据,以及大数据交易市场的建立是中国大数据商业价值应用的重中之重。
另外大数据的应用场景和大数据隐私问题,也是大数据商业应用功能的两大问题,不知道数据应用场景,就无法寻找具有价值的数据,就无让数据发挥作用,大数据的应用就会停留在解决数据采集、处理、存储等大数据1.0时代的低级阶段,无法实现大数据商业变现,无法激励企业进一步投资大数据,无法形成数据价值应用的生态循环。大数据隐私问题是所有企业不能回避的问题,到底何种数据可以进行交换,何种数据可以采集和变现,何种数据可以作为商品在市场流通,这些问题既影响个人隐私保护,又影响到企业购买数据产品的积极性,同时也影响了数据企业的发展。
中国大数据企业分为三类,一类是大数据技术公司,为企业提供大数据平台搭建,技术咨询,大数据计算和存储的产品,例如华为、亚信、浪潮等传统IT公司。一类是大数据服务公司,为企业提供基于大数据技术的服务、平台、产品。包括为企业搭建大数据挖掘工具,搜索引擎,分析引擎等大数据处理平台,大数据清洗和挖掘服务例如明略科技,ADMaster,百分点。最后一类是提供数据产品的大数据公司,他们拥有数据,加工生成具有价值的数据,为市场提供标准的数据产品。例如芝麻信用,TalkingData,九次方,星图数据等。
中国大数据市场的数据来源有四种,一种是通过网络爬虫采集的外部数据,大多数提供舆情分析的公司就是通过爬虫技术来进行数据采集的。例如海量数据。一种是提供SaaS服务得到的数据,例如Talkindata。另外一种是靠和运营商或政府合作,通过数据挖掘得到的数据,例如亚信和九次方。最后一种就是自身平台产生的数据(电商、旅游、媒体等互联网企业),包括BAT以及较大的一些互联网公司如360、当当、唯品会、聚美优品、携程、今日头条等。
一、开放数据的价值
开放数据就是政府向社会公布自己所拥有的,并经过脱敏的数据。包括天气数据、GPS数据、金融数据、教育数据、交通数据、能源数据、医疗数据、政府投资数据、农业数据等。这些原始数据本身并没有明显的商业价值,但经过一些公司加工之后,可以产生巨大的商业价值。
开放数据在美国有几千亿美金的市场,包括300亿美金的气象数据,900亿美金的GPS数据,上千亿美金的医疗数据。但政府开放的数据是原始数据,数据自身的商业价值并不大,需要专业的公司对数据进收集,清洗,挖掘,展现,从而形成具有商业价值的数据。在美国有很多公司是依靠加工政府开放数据而实现其商业价值的,例如处理天气数据的Zillow公司,the weather channel 公司,以及处理GPS数据的Garmin公司,它们的总市值已经超过了一百亿美金。
1 、政府开放数据的主要范围
a政府收集和制造的科学数据。例如天气数据,政府资助的医疗研究数据。这些数据都可以作为公共资源进行使用。
b 政府运行的数据,例如政府支出或大型项目运行数据。开放数据一方面可以增加民众对政府的信任,另一个方面可以给一些公司带来商业机遇。
c监管行业的数据。这些数据由企业提供给政府,并且经过政府二次加工。这些宏观数据对于产业规划,企业的投资战略都有很大影响。
2、 中国开放数据之路的挑战
a 国家对数据治理还没有完成。很多数据没有集中管理,还是处于信息孤岛状态,这些都是开放数据需要解决的问题。数据治理投资巨大,时间周期较长,都是巨大的挑战。
b 一些开放数据还不是电子形式。例如医疗数据和教育数据,在一些地区还处于纸质记录状态,没有形成电子档案。这些数据的电子化也是一个较大的挑战。
c 开放数据的脱敏和整合将是一项重大的挑战。特别是国有企业的数据,哪些数据可以公开,哪些数据需要脱敏,如何整合各个地方的数据,这些都是一个挑战
d 大数据服务公司和大数据人才匮乏。由于大数据市场刚刚开始,市场上缺少大数据人才和大数据服务公司,公开的数据短时间可能很难产生商业价值,这会影响政府和企业开放数据的积极性,不利于形成良性的大数据商业市场,会影响开放数据项目的持续发展。
3、有关开放数据一些建议
人类社会即将进入数字时代,开放数据将会是巨大的生产力。政府已经认识到了开放数据的价值,会持续推动政府和国企的数据开放。即使短时间内开放数据的投资看不到商业价值,但其未来经济价值会促使政府坚持开放数据的政策,持续进行投资。就像中国的高速公路,开放数据是另外一条信息高速公路,将数据转化为资产,转化为巨大的社会生产力,帮助企业实现更大的商业价值。
对于数据拥有者的政府,需要在保障公共安全和个人隐私的前提下,完成数据治理和数据整合,逐步向社会开放数据,并提高数据质量,公开面向所有个人和企业,有效利用政府科技资金,让利益相关企业和个人参与到开放数据项目中,鼓励创新,接受外部挑战,利用集体智慧,实现数据最优选择。
对于国有企业,需要在保护自身商业利益的前提下开放数据,帮助各自产业链企业的发展。同时开放数据也可以帮助其自身进行产业规划,进行有效投资,发现市场机会和风险,稳健经营,科学决策。企业可以利用开放数据提高生产效率,减少资源浪费,降低决策失误风险。产业链企业的良性发展,也会推动国企自身发展和进化,提高竞争力,优化企业经营,实现产业共赢。
对于企业家,开放数据将会作为新的资源,帮助企业进行发展,聚焦新的商业机遇,特别是在开放数据影响较大的保健行业,金融行业,能源行业,教育行业。数据服务公司可以利用开放数据,帮助消费者挖掘数据的潜在价值,为企业和政府提供具有价值的商业数据。对于经营中的公司,可以利用开放数据评价商业伙伴和潜在投资,通过提供数据来树立消费者的忠诚度,学会在透明的商业社会中进行经营,寻找公共或私人合作的机会,专注自身产品和客户,为消费者提供更好的产品和服务。
二、万亿的大数据市场
2014年的GDP中消费占比已经超过了50%,标志着中国经济正在向市场经济转型,消费占GDP 50%-70%是中等发达国家向市场经济过渡的一个表现,未来中国经济增长最大的引擎应该来源于消费,特别是个人消费。中国正在经历经济结构调整和城镇化,个人消费需求巨大,社会产品较为丰富,渠道也较为通畅,物流成本正在下降,运输能力正在提高。但是社会消费零售总额增加的还不够快,资源配置不平衡,社会整体消费水平还处于较低的水平。这些问题正在成为中国经济发展的难题,是企业和社会需要解决的问题。
大数据的商业应用将会帮助企业解决这些问题;大数据的有效利用将会提高社会消费水平,将会帮住企业提高效率、洞察客户、增加收入。大数据商业应用未来是万亿级的大市场,大数据是大生意。
大数据时代最重要的特征是人类所有的行为都被数据记录下来,无论是在电商的购买行为,旅游度假,娱乐活动,行为轨迹等,所有的人类社会行为都被各种传感器和互联网记录下来。数据记录了一切,人类社会的行为都变成了数据,用纸质媒体记录人类历史的时代已经过去,历史正在被数据以文字、数据、表格、声音、影像的方式记录了下来。中国的大数据应用主要集中在征信和精准营销,这两个市场的规模加在一起不过两千亿,但是大数据如果同所有企业的商业需求相结合,其产生的化学反应将是巨大的,市场规模将会超过万亿,大数据是个大生意。
网络连接了信息与读者,阿里连接了商品与消费者,腾讯连接了人与人。BAT所有的连接都是建立在数据基础之上的,可以认为大数据连接了一切。数据连接了消费者和商家,数据连接了客户习惯,数据连接客户喜好,数据连接了位置,数据连接了时间和空间,数据连接了历史和现在。连接一切的大数据将会反馈所连接的事物、空间和时间,通过数据记录来反馈物体的移动,客户的消费习惯,个人爱好,行为习惯,活动轨迹,运动规律等。重要的这些反馈数据能知道;你是谁、你在哪里、你喜欢什么、你在干什么、你的消费能力、以及你未来的需求等。所有被反馈的事物都被打上了一个或多个数据标签,这些具有价值的标签经过整理和分析后,将会揭示事物之间的相关性和规律,将会为个人、商家、社会带来巨大价值。
1、大数据帮助制造业规划生产,降低资源浪费
制造业过去面临生产过剩的压力,很多产品包括家电、纺织产品、钢材、水泥、电解铝等都没有按照市场实际需要生产,造成了资源的极大浪费。利用电商数据、移动互联网数据、零售数据,我们可以了解未来产品市场都需求,为客户定制产品。
例如依据用户在电商搜索产品的数据以及物流数据,可以推测出家电产品和纺织产品未来的实际需求量,厂家将依据这些数据来进行生产,避免生产过剩。移动互联网的位置信息可以帮助了解当地人口进出的趋势,避免生产过多的钢材和水泥,
2、移动大数据帮助房地产开发商规划房地产开发
房地产行业在过去为中国GDP贡献了很大力量,未来粗放型的房地产行业将会转向精细化经营,从选地到规划和从设计到建设,都需要参考当地到人口数据和消费者信息,进行科学决策;利用大数据商业应用加快房子销售速度,降低自身负债。
房地产公司可以利用人群的手机位置信息来帮助企业进行开发规划、土地选址、商铺开发等。同时利用人群到用户画像信息帮助房产公司选择合作商户,提升消费人气,最终提高房产价值。
3、移动大数据帮助餐饮零售行业进行选址和顾客导流
餐饮零售行业最关注客户流量,过去开店选址时经常安排人员在十字路口进行人流统计,利用统计的人口流动信息来决定开店地址。进入到移动互联网时代之后,智能手机的位置信息可以帮助餐饮零售行业进行开店选址,企业可以参考客户画像来决定开店的规模,以及产品的类别。
移动互联网端的用户标签和画像数据还可以帮助企业进行一些精准营销,为新开的商户导入客流。特别是在规模较大的购物商厦中,移动App端的位置导航功能,可以指引客户找到新的商户,参加促销活动。市场上已经有成熟的零售餐饮商家和移动互联网大数据公司在开店引流方面进行合作,资金利用的杠杆率超过了5倍,投入产出比较高。
4、传感器数据帮助产品进行故障诊断和预测
家电和汽车正在走向智能化,通过安装传感器,汽车和智能家电可以将运行参数和运行状态传送到厂家的云平台,厂家可以了解其产品的运行状态,零部件的老化程度,帮助厂家及时更换故障器件,延长产品使用寿命,提高安全系数。汽车行业和智能家电在物联网领域将会产生巨大的市场,云计算和大数据处理平台将起到关键的作用。
中国汽车市场的销售规模超过万亿,家电市场也有一万多亿。车联网和智能家电涉及的大数据应用市场也是巨大的,按照大数据商业变现高杠杆率的特点,其市场规模至少应该在百亿左右。
5、利用移动互联网位置信息进行精准营销
O2O已经成为了一个重要的商业模式,很多互联网企业和传统企业都在寻找O2O的应用场景,订餐、教育、家政、汽车美容等都成为O2O的应用典范。移动互联网数据具有LBS和实时特点,可以帮助企业及时连接客户,依据客户需求进行精准营销。
大型购物中心一般都设有电影院,经常存在某些电影在开场前30分钟,大量电影票还没有出售的情况。借助于手机App推送广告功能,电影院在电影放映前30分钟,可以将电影票以2折价格推送给正在周围就餐的客户。依据客户画像信息,电影票将推送给喜爱看电影的顾客,增加电影销售额。企业可以利用手机App进行广告推送,做到千人千面,依据客户喜好来进行广告推送。这种精准广告推送具有成本低、转化率高的特点,在餐饮、服装、美容、零售等行业取得了良好的应用效果。如果基于位置信息的精准广告推送被大规模的商业应用,将会促进商品流转,大幅度提高社会消费总额,帮助传统企业实现互联网+的战略。
6、电商大数据将会帮助企业优化资源配置
电商是最早利用大数据进行精准营销的行业,电商网站内推荐引擎将会依据客户的购买行为,进行关联产品的推荐。除了精准营销,电商还可以依据客户消费习惯来提前为客户备货,并利用便利店作为货物中转点,在客户下单后的短时间内,将货物送上门,提高客户体验。电商还可以利用其交易数据和现金流数据,为其生态圈内的商户提供小额贷款,也可以将此数据提供给银行,为中小企业信贷提供支持。
电商的数据量足够大,数据较为集中,数据种类较多,其商业应用具有较大的想象空间。包括预测流行趋势,消费趋势、地域消费特点、客户消费习惯、消费行为的相关度、消费热点等。依托大数据分析,电商可帮助企业进行产品设计、库存管理、计划生产、资源配置等,有利于精细化大生产,提高生产效率,优化资源配置。
7、移动大数据助力交通运输规划和管理
交通大数据应用主要在两个方面,一方面可以利用大数据传感器的数据了解车辆通行密度,合理进行道路规划。另一方面可以利用大数据分析来实现交通信号灯智能切换,提高已有线路运输能力。
在美国,政府依据某一路段的交通事故信息来增设信号灯,降低了50%以上的交通事故率。大数据可以帮助机场安排航班起降,提高管理效率;航空公司可以利用大数据提高上座率,降低运行成本;铁路公司可以利用大数据安排客运和货运列车,降低运营成本。
8、大数据帮助金融行业进行价值变现
大数据在金融行业应用范围较广,典型的案例有花旗银行利用IBM沃森电脑为财富管理客户推荐产品,美国银行利用客户点击数据集为客户提供特色服务。招商银行(600036,股吧)利用客户刷卡、存取款、电子银行转帐、微信评论等行为数据进行分析,每周给客户发送针对性广告信息。
中国目前金融行业大数据价值变主要在用户体验提升和大数据营销两个方面,其中招商银行信用卡中心和平安银行(000001,股吧)走到了金融行业的前面。
大数据在很多行业都有广泛的应用场景,例如在医疗行业,农林牧渔、能源行业、物流行业等,大数据将会是电商之后的另外一个巨大市场,结合了所有行业的商业需求之后,大数据产业的市场规模将会是个万亿级别。大数据不是电力但是比电力更能提供动力,大数据不是石油,但是比石油更能驱动企业发展。大数据就是资产,能够帮助企业进行价值变现。大数据的生意经其实很简单,就是收入增加,花费减少;就是增加客户,提高客户体验,提高资金回报的杠杆率;大数据应用成熟之后,大数据可以预测商业未来,发现新的商业机会。

B. 大数据被滥用后,会产生什么后果

因为大数据是一个时代潮流,是无法避免的一个时代趋势,但是大数据一旦被滥用,会造成很严重的后果,仅仅是针对个人用户,而是针对整个行业和社会都会有无法挽回的损失和严重后果。

大数据滥用侵害用户权益

首先提到大数据滥用,作为一个普通人,最担心的就是自己的合法权益会受到侵害,当然这也是大数据滥用最大的危害和后果。

而大数据的滥用一旦发生到不可挽回的地步,必将摧毁的是大数据行业的发展,也必将将大数据行业推上一个风口浪尖的位置,使得大数据行业就此堙没。

结语

大数据的发展从来都是一把双刃剑,可以为人类创造更多的财富与机遇,也可以颠覆整个行业的发展,大家看好大数据的发展吗?

C. 大数据时代,对人们生活的影响在哪些方面

大数据时代的影响:

1、大数据技术不仅能够提高人们利用数据的效率,而且能够实现数据的再利用和重复利用,进而大大降低交易成本,提升人们开发自我潜能的空间。

2、人们可以低成本或零成本进行事物信息全息式的纵向历史比对和横向现实比对。大数据技术自身不仅能够迅速衍生为新兴信息产业,还可以同云计算、物联网和智慧工程技术联动,支撑一个信息技术的新时代。

3、云计算技术可以使人们及时利用各类大数据。物联网技术的实质就是物物相连的互联网,物联网的核心和基础仍然是互联网,其用户端延伸和扩展到了任何物品与物品之间,进行信息交换和通信。

(3)大数据利用什么造成社会资源浪费扩展阅读:

大数据时代带来的机遇:

1、社会治理是对社会的经济、政治和文化等事务进行的组织、协调、指导、规范、监督的过程。它涉及合理有效配置社会资源,比如提供教育、文化、卫生、体育、社会保障等社会公共服务和公共产品,保障社会公平与公正;涉及通过行政及司法手段保障社会安全和社会稳定。

2、创新社会治理,是我国应对社会转型、化解社会矛盾、协调利益关系、维护社会秩序所面临的一项重大战略任务。

3、大数据技术通过对海量数据的快速收集与挖掘、及时研判与共享,成为支持社会治理科学决策和准确预判的有力手段,为社会转型期的社会治理创新带来了机遇。

D. 大数据对社会有哪些影响

一、思维方式改变


所谓思维方式,是一种习惯性的思考问题和处理问题的模式,并由此对我们的行为方式产生直接的影响。然而,如今大数据正影响着我们的思维方式。随着网络、腾讯、淘宝等网络公司的迅速崛起以及他们的迅速致富,数据致富成了新的致富神话。先前那些房地产、电器大亨费了九牛二虎之力才取得的亿万财富,而这些网络数据商则在短短的几年时间就迅速超越了这些实体公司的财富,并且所费人力、物力和财力甚少。


二、教育的改变


传统的学校教育模式映射了工业化集中物流批量生产的模式:铃声、标准化的课堂、统一的教材、统一的服装等。虽然这种教育也培养出了很多人才,然而大数据教育将呈现另外的特征,例如弹性学习、个性化辅导等。学习分析是近年来大数据在教育领域较为典型的应用,利用松散耦合的数据收集工具和分析技术,研究并分析学生学习参与、学习表现和学习过程的相关数据,进而对课程、教学进行实时修正并预测学习者未来的学习趋势。


三、经济的改变


虽然我们在政治课上学到的是,生产决定消费,消费对生产有重要的反作用力。然而我认为,在如今这个极为宣扬个性与创造力的社会中,消费很大程度地决定着生产。消费者不认同的,就卖不出去,只有消费者认同的,才卖得出去。然而,大数据可以在较短的时间内,通过对数据的全面感知、筛选、收集、分析、共享等为生产者提供可靠的、及时的信息,让生产者生产出更为畅销、更具个性化的物品。


关于大数据对社会有哪些影响,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

E. 关于大数据的五大谬见

关于大数据的五大谬见
近期,有关大数据的新闻占据着各大媒体科技报道的主要版面。但是,有许多文章似乎华而不实,一些报道鼓吹大数据是能够解决一切问题的解决方案,如它能进行入侵检测、预防诈骗、治疗癌症,甚至还能设置最优的产品价格
但是,业界定义的大数据是指迅速收集的、各种各样的、大量的数据集合,而不是能够处理一切问题的万能解决方案。在现实中,如果一些企业偏信这些与大数据相关的谬见,那么这些企业很可能会偏离正轨,走向错误的发展方向,浪费大量的时间和金钱,丧失其在市场上有利的竞争地位,还可能损害企业的声誉。
此篇文章就讲述了业界常出现的有关大数据五大谬见。
1. 只有数据科学家才能处理大数据
事实上,在处理大数据时,光靠数据科学家是远远不够的。
“如果你不能首先确定到底需要什么样的信息的话,那么单凭数据科学家自己是不可能成功地从大数据中提取有用信息的”,宾夕法尼亚大学医院(Penn Medicine)数据分析部门高级主管Pat Farrell说:“你还需要熟悉业界动态、掌握相关领域知识的人才,他们知道问题的所在,也了解什么样的解决方案对于你所从事的领域最有价值。”
例如,在宾夕法尼亚大学医院有两个系统,一个是医疗系统,一个是医学院系统。长期以来,医疗系统通常从一个数据仓库中收集临床医疗数据。与此同时,在医学院系统中,出现了一个新的技术,可以实现对人类基金组的排序,并产生了大量的数据。
Farrell说:“我们知道这些数据一定存在着某些价值,而我们最终也有了能够获取这些价值的计算能力。我们将专业的医疗知识与数据分析技术相结合,为预测医疗开拓了一片新的、更广阔的领域。”
2. 数据越大,价值越大
收集数据,并把它储存起来再登记入册,这会花费许多时间、占用很多资源。如果企业或机构在收集数据时不加选择、任意地收集大量数据,那么很可能会造成大量的资源浪费,而这些资源完全可以用到更有价值的项目上去。
Farrell建议企业在收集数据之前一定要有一个具体的目标,或关键性能指标,要明确自己需要什么样的数据,再去有目的地收集数据。
Farrell说:“你需要从你收集的数据中提取有价值的信息,但这并不代表你收集的数据越多,你所获得的价值越大。”
3.大数据用于大企业
大企业或许会有更多的内部数据来源,他们可以利用这些数据获取对自身企业发展有价值的东西。但这并不代表大数据只用于大企业,小企业也能够收集来自社交媒体平台、政府机构和数据供应商的数据,并从这些数据中提取有利信息。
戴尔软件信息管理解决方案部门的产品管理高级总监Darin Bartik说:“对于企业来说,不管它的规模有多大,利用数据分析制定的决策总比单纯依靠直觉或第六感制定的决策要好得多,且更加可靠。”
小企业虽然不像大企业那样经常利用数据分析来制定决策,但是当这些小企业真正这样做的时候,它们会使公司走向快速、正确的发展轨道。
Darin Bartik说:“小企业可以利用其最佳实践,进一步推动数据分析决策在企业中的发展,以此赶超或者胜过那些强大的竞争对手。”
4. 收集数据后不及时整理分类
位于美国旧金山的云计算商业智能供应商Birst的首席执行官Brad Peters表示,虽然数据存储的成本越来越低,但它并不是免费的。然而,对于许多大公司来说,它们对于数据欲望的增长速度要比数据存储成本降低的速度快得多。
许多企业往往在收集完数据之后,并不迅速处理这些数据,造成数据存储成本增加。Brad Peters说:“我发现很多大的企业或机构收集了一大堆数据之后却不及时处理这些数据,导致他们在这些数据上的开支逐渐增大,而他们也并没有从这些数据中获取任何价值。”
事实上,企业中的一些数据集已经开始造成了企业的收益递减。这种现象就像通过分析选民数据信息来预测选举结果一样,在预测过程中,你需要一定数量的选民作为样本,但是如果样本数量超过一个临界点之后,无论增加多少选民,对于预测结果不会有任何太大的影响。也就是说,样本数量过多,所花费的成本也就越多,但对于目标没有任何实质性的价值。
“数据冗余的话,企业支出的不仅仅是存储成本,还会面临许多其他的问题”, Recommind公司信息治理和大数据管理全球主管Dean Gonsowski说。比如,如果数据泄露的话,那么公司也会承担相应的损失。Recommind是一家位于美国旧金山的专注于非结构化数据分析的公司。
最终,数据越多,那么分类整理数据所需要的时间也就越多。Dean Gonsowski说:“当数据仓库的规模达到数十亿条记录时,那么光是检索数据就需要花上几个小时,甚至是几个星期。这时候,这些信息非但不会给企业带来商业价值,反而会阻碍企业系统的运转,因为这些系统根本不能处理这么大信息量。”
5. 所有数据都是一样的
美国佛吉尼亚州曾收集过在过去20年里学生的注册信息、奖学金,以及学位授予情况的数据,但这并不意味着20年前收集的与之存储在同一个数据域里的数据就一定是相同的数据。
佛吉尼亚州高等教育委员会的政策研究和数据仓库部门的主管Tod Massa说:“由于数据都存储在一个数据仓库里,这导致研究人员认为这些数据都是等同的,而这正是我需要处理的一个最大的问题。我们收集的ACT(American College Test,美国大学入学考试)和SAT(Scholastic Assessment Test,学术能力评估测试)的学生成绩,最初我们收集的只是整个佛吉尼亚州的学生成绩,但这导致我们的调查研究出现一个缺口,所以后来我们不仅收集了佛吉尼亚州的数据,还收集了其他州学生的数据。而且,不同种族在K-12级和高等教育的数据也不同。”
事实上,任何特定的数据,如果由不同的组织机构,或在不同的时间内,或由不同的人发布的话,也有所不同。Tod Massa说:“假如收集数据的这家公司或机构是完全孤立或与世隔绝的,那么情况可能会不一样。但我认为,随着时间的推移,它们收集的数据也会有所变化。”
因此,数据分析人员不仅要有数据统计的技能,还要掌握一定的数据知识,并清楚地了解相关行业内的动向和整体发展趋势。
这一点也同样适用于从外部数据源收集的数据,过去的那种数据收集和分析的方式已经完全改变了。能够了解不同的数据文化背景和数据环境,对于充分利用这些数据是非常必要的。

F. 大数据利用的什么会带来新的垄断和社会资源浪费

顾类计发展历史难看财务产离经济发展与类社进步特别类进入现代社财务计随着市场经济断发展完善更新发展规律难看财务计发展必随着经济环境变化产变化或做相应调整终实现财务计发展与经环境变化间相互协调随着现代信息化程度断加深企业数据量逐渐增并呈现爆炸式增趋势、数据结构复杂化发展变化态势信息爆炸代论型企业私营企业都加快脚步追赶着数据发展脚步希望能够发现企业实现财富途径资源提高企业核竞争力自身价值

、数据代计工作提要求与产影响

随着类代背景断演进数据代决定企业发展步伐必须紧跟代发展进步与俱进、及创新作代发展必产物计工作发展必须与代同步必须定代背景进行完善数据代计工作提新要求

()计工作应收集并存储更具种结构数据资料

信息代发展所带数据所蕴含价值估量其所包含各种用信息估算数据技术更全面反映企业经济业务所需数据治疗提供便利条件企业通效收集各种数据帮助企业效提高企业市场占率、企业抢占竞争优势种必趋势企业计部门作直接与各种数据、资料、信息相接处部门能更利用种数据代所创造量数据资料企业信息使用者提供第手信息资料便于企业进行各种决策要求企业财务员必须能够熟悉信息技术能够快捷、准确众数据资料、繁杂数据形式探寻价值数据用全面反应企业经济业务发展状况消灭信息称产问题例:于企业本控制与内部控制员随着市场经济断发展与完善微利代本高低企业获利关键性素数据代专业本析与控制员仅要具备丰富、扎实财务专业知识必须企业各项产工艺流程、产环节、企业内控流程等进行解与高度关注各种指标及进行控(:产效率、产品报废率、各种产品本差异、各种费用使用情况等数据指标)并本控制系统帮助充挖掘相关本数据并本数据进行合理配、归集、构析等企业本效控制奠定基础企业决策提供帮助

(二)计工作应更加关注非结构化数据带价值

目前各企事业单位计处理主要针具结构化数据进行各种处理现代计算机技术发展、信息技术发展、网络技术普及等都计员进行结构化数据处理提供便利面已经基本趋于熟于结构化数据计算、汇总、统计等工作已经非娴熟即使遇较数据量能相应商业软件协助完整些工作随着信息代断发展半结构化、非结构化数据组件数据界主流种本质取代飞跃仅仅体现数据量变化更充体现数据所产价值要求计工作要想真海量数据资料找具丰富价值数据必须充析些数据价值并努力挖掘非结构数据数据价值挖掘越越能企业经营发展带竞争优势

(三)应断满足计信息使用者性化需要

计工作项企业经营者提供决策信息系统化工程随着社主义市场经济断深入发展各企业面临市场竞争益激烈企业各利益相关者于经营决策科性、确性、适用性等面内容越越关注引发企业计工作目标变化并逐渐完由经济管理责任向决策责任转变随着数据代云计算应用、数据信息容量增加、信息使用者需求逐渐变更加元化、复杂化、性化些要求于计工作言难预测随着数据代发展企业决策者更加关注计信息性化发展趋势传统计工作重挑战计工作数据代改进应努力遵循基本原则采取积极措施应种确定性

(四)效提升计信息准确度

传统计工作企业财务报告编制主要建立基本确认、计量、记录基础由于技术手段缺乏与完善企业财务数据、相关业务数据作企业管理重要资源并未其价值充发挥并未引起足够重视特别企业进行决策由于受技术条件限制于决策需求数据信息并未及、充收集、整理、析、评价导致数据间整理存难度数据使用效率偏低影响企业财务信息真实性、准确性、精确性、用性例:财务管理数据企业产财务报表失作用价值处于休眠状态数据代促进技术发展企业高效率处理、整合各种海量数据并挖掘更价值、更能促进企业发展数据提升企业财务管理数据准确性使其向着科化、标准化、规范化向迈进

(五)全面促进财务员角色转化

数据代使企业计员拜托传统角色性仅仅进行简单记账、符合、报表析等工作想着进行高层计管理工作向转变传统计员通报表数据析简单企业管理者、经营者、决策者提供数据依据市场经济发展、竞争加剧建立财务报表基础简单数据析足满足信息需求者需要数据代企业财务员同角度、同层面探寻企业发展所需信息彻底打破传统Excel数据析所能实现数据析难题通些数据本质看企业发展问题、现状并及企业经营状况、经营进行客观评价揭示企业足转变经营者思路提供明确向
二、数据网络代计工作新思路

()顺应代发展作计工作总纲领

计工作实务断变迁外部环境发展起并伴随着环境变化产变革计工作必须结合密切代背景、背景、社背景让计发展顺应代发展潮流数据代获取数据信息途径越越简单、越越快捷计工作发展必须适应代潮流作总纲领

(二)树立本重点工作

力资源知识经济代企业竞争力提升主要源泉并企业价值创造与转移起着至关重要作用传统力资源管理模式看似稳定实际隐患重重容易员工造相互推诿、扯皮现象发数据代信息传递呈现碎片化现象充发挥主观能性、创造性才能提高海量数据产力本使数据代计工作转变例:期财务员都脱离企业业务实际坐办公室部门造车业务财务员则实现财务与业务完美结合要求财务员必须深入打破企业各业务部门环节业务信息直接转变各种价值财务信息企业提供更专业财务析面海尔集团业务财务员功转型做较

(三)信息技术支持提升财务管理能力

现代信息技术发展带物联网、互联网、企业内部网络间迅猛发展促进数据代发展离信息技术支持针打数据收集、处理、输、析等受重重阻碍现代信息技术已经现代企业竞争获胜重要手段、击败手重要武器例:物联网其广泛通信网络作基础实现物联网与信息需求结合随着数据代先进信息技术顺应企业经营管理者需要断发展企业财务管理者数据背景降低资金本、提高资金使用效率企业发展带丰厚利润

总随着数据代企业选择数据、处理数据、析数据、整合数据能力断增强面新形势企业计工作必须及进行创新才能确保企业健康、稳定、持续发展
-

G. 中国大数据的十大商业应用

中国大数据的十大商业应用

在未来的几十年里,大数据都将会是一个重要都话题。大数据影响着每一个人,并在可以预见的未来继续影响着。大数据冲击着许多主要行业,包括零售业、金融行业、医疗行业等,大数据也在彻底地改变着我们的生活。现在我们就来看看大数据给中国带来的十商业应用场景,未来大数据产业将会是一个万亿市场。

1、智慧城市

如今,世界超过一半的人口生活在城市里,到2050年这一数字会增长到75%。政府需要利用一些技术手段来管理好城市,使城市里的资源得到良好配置。既不出现由于资源配置不平衡而导致的效率低下以及骚乱,又要避免不必要的资源浪费而导致的财政支出过大。大数据作为其中的一项技术可以有效帮助政府实现资源科学配置,精细化运营城市,打造智慧城市。

城市的道路交通,完全可以利用GPS数据和摄像头数据来进行规划,包括道路红绿灯时间间隔和关联控制,包括直行和左右转弯车道的规划、单行道的设置。利用大数据技术实施的城市交通智能规划,至少能够提高30%左右的道路运输能力,并能够降低交通事故率。在美国,政府依据某一路段的交通事故信息来增设信号灯,降低了50%以上的交通事故率。机场的航班起降依靠大数据将会提高航班管理的效率,航空公司利用大数据可以提高上座率,降低运行成本。铁路利用大数据可以有效安排客运和货运列车,提高效率、降低成本。

城市公共交通规划、教育资源配置、医疗资源配置、商业中心建设、房地产规划、产业规划、城市建设等都可以借助于大数据技术进行良好规划和动态调整。

大数据技术可以了解经济发展情况,各产业发展情况,消费支出和产品销售情况,依据分析结果,科学地制定宏观政策,平衡各产业发展,避免产能过剩,有效利用自然资源和社会资源,提高社会生产效率。大数据技术也能帮助政府进行支出管理,透明合理的财政支出将有利于提高公信力和监督财政支出。大数据及大数据技术带给政府的不仅仅是效率提升、科学决策、精细管理,更重要的是数据治国、科学管理的意识改变,未来大数据将会从各个方面来帮助政府实施高效和精细化管理,具有极大的想象空间。

2、金融行业

大数据在金融行业应用范围较广,典型的案例有花旗银行利用IBM沃森电脑为财富管理客户推荐产品,美国银行利用客户点击数据集为客户提供特色服务。中国金融行业大数据应用开展的较早,但都是以解决大数据效率问题为主,很多金融行业建立了大数据平台,对金融行业的交易数据进行采集和处理。

金融行业过去的大数据应用以分析自身财务数据为主,以提供动态财务报表为主,以风险管理为主。在大数据价值变现方面,开展的不够深入,这同金融行业每年上万亿的净利润相比是不匹配的。现在已经有一些银行和证券开始和移动互联网公司合作,一起进行大数据价值变现,其中招商银行、平安集团、兴业银行、国信证券、海通证券和TalkingData在移动大数据精准营销、获客、用户体验等方面进行了不少的尝试,大数据价值变现效果还不错,大数据正在帮助金融行业进行价值变现。大数据在金融行业的应用可以总结为以下五个方面:

(1)精准营销:依据客户消费习惯、地理位置、消费时间进行推荐

(2)风险管控:依据客户消费和现金流提供信用评级或融资支持,利用客户社交行为记录实施信用卡反欺诈

(3)决策支持:利用抉策树技术进抵押贷款管理,利用数据分析报告实施产业信贷风险控制

(4)效率提升:利用金融行业全局数据了解业务运营薄弱点,利用大数据技术加快内部数据处理速度

(5)产品设计:利用大数据计算技术为财富客户推荐产品,利用客户行为数据设计满足客户需求的金融产品

3、医疗行业

医疗行业拥有大量病例、病理报告、医疗方案、药物报告等。如果这些数据进行整理和分析,将会极大地帮助医生和病人。在未来,借助于大数据平台我们可以收集疾病的基本特征、病例和治疗方案,建立针对疾病的数据库,帮助医生进行疾病诊断。

如果未来基因技术发展成熟,可以根据病人的基因序列特点进行分类,建立医疗行业的病人分类数据库。在医生诊断病人时可以参考病人的疾病特征、化验报告和检测报告,参考疾病数据库来快速帮助病人确诊。在制定治疗方案时,医生可以依据病人的基因特点,调取相似基因、年龄、人种、身体情况相同的有效治疗方案,制定出适合病人的治疗方案,帮助更多人及时进行治疗。同时这些数据也有利于医药行业开发出更加有效的药物和医疗器械。

医疗行业的数据应用一直在进行,但是数据没有打通,都是孤岛数据,没有办法起大规模应用。未来需要将这些数据统一收集起来,纳入统一的大数据平台,为人类健康造福。政府是推动这一趋势的重要动力,未来市场将会超过几千亿元。

4、农牧业

农产品不容易保存,合理种植和养殖农产品对农民非常重要。借助于大数据提供的消费能力和趋势报告,政府将为农牧业生产进行合理引导,依据需求进行生产,避免产能过剩,造成不必要的资源和社会财富浪费。大数据技术可以帮助政府实现农业的精细化管理,实现科学决策。在数据驱动下,结合无人机技术,农民可以采集农产品生长信息,病虫害信息。

农业生产面临的危险因素很多,但这些危险因素很大程度上可以通过除草剂、杀菌剂、杀虫剂等技术产品进行消除。天气成了影响农业非常大的决定因素。过去的天气预报仅仅能提供当地的降雨量,但农民更关心有多少水分可以留在他们的土地上,这些是受降雨量和土质来决定的。Climate公司利用政府开放的气象站的数据和土地数据建立了模型,他们可以告诉农民可以在哪些土地上耕种,哪些土地今天需要喷雾并完成耕种,哪些正处于生长期的土地需要施肥,哪些土地需要5天后才可以耕种,大数据技术可以帮助农业创造巨大的商业价值。

5、零售行业

零售行业比较有名气的大数据案例就是沃尔玛的啤酒和尿布的故事,以及Target通过向年轻女孩寄送尿布广告而告知其父亲,女孩怀孕的故事。

零售行业可以通过客户购买记录,了解客户关联产品购买喜好,将相关的产品放到一起增加来增加产品销售额,例如将洗衣服相关的化工产品例如洗衣粉、消毒液、衣领净等放到一起进行销售。根据客户相关产品购买记录而重新摆放的货物将会给零售企业增加30%以上的产品销售额。

零售行业还可以记录客户购买习惯,将一些日常需要的必备生活用品,在客户即将用完之前,通过精准广告的方式提醒客户进行购买。或者定期通过网上商城进行送货,既帮助客户解决了问题,又提高了客户体验。

电商行业的巨头天猫和京东,已经通过客户的购买习惯,将客户日常需要的商品例如尿不湿,卫生纸,衣服等商品依据客户购买习惯事先进行准备。当客户刚刚下单,商品就会在24小时内或者30分钟内送到客户门口,提高了客户体验,让客户连后悔等时间都没有。

利用大数据的技术,零售行业将至少会提高30%左右的销售额,并提高客户购买体验。

6、大数据技术产业

进入移动互联网之后,非结构化数据和结构化数据呈指数方式增长。现在人类社会每两年产生的数据将超过人类历史过去所有数据之和。进入到2015年,人类社会所有的数据之和有望突破5泽B(5ZB),这些数据如何存储和处理将会成为很大的问题。

这些大数据为大数据技术产业提供了巨大的商业机会。据估计全世界在大数据采集、存储、处理、清晰、分析所产生的商业机会将会超过2000亿美金,包括政府和企业在大数据计算和存储,数据挖掘和处理等方面等投资。中国2014年大数据产业产值已经超过了千亿人民币,本届贵阳大数据博览会就吸引了400多家厂商来参展,充分说明大数据产业的未来的商业价值巨大。

未来中国的大数据产业将会呈几何级数增长,在5年之内,中国的大数据产业将会形成万亿规模的市场。不仅仅是大数据技术产品的市场,也将是大数据商业价值变现的市场。大数据将会在企业的精准营销、决策分析、风险管理、产品设计、运营优化等领域发挥重大的作用。

大数据技术产业将会解决大数据存储和处理的问题,大数据服务公司将利用自身的数据将解决大数据价值变现问题,其所带来的市场规模将会超过千亿人民币。中国目前拥有大数据,并提供大数据价值变现服务的公司除了我们众所周知的BAT和移动运营商之外,360、小米、京东、TalkingData、九次方等都会成为大数据价值变现市场的有力参与者,市场足够大,期望他们将市场做大,帮助所有企业实现大数据价值变现。

7、物流行业

中国的物流产业规模大概有5万亿左右,其中公里物流市场大概有3万亿左右。物流行业的整体净利润从过去的30%以上降低到了20%左右,并且下降的趋势明显。物流行业很多的运力浪费在返程空载、重复运输、小规模运输等方面。中国市场最大等物流公司所占的市场份额不到1%。因此资源需要整合,运送效率需要提高。

物流行业借助于大数据,可以建立全国物流网络,了解各个节点的运货需求和运力,合理配置资源,降低货车的返程空载率,降低超载率,减少重复路线运输,降低小规模运输比例。通过大数据技术,及时了解各个路线货物运送需求,同时建立基于地理位置和产业链的物流港口,实现货物和运力的实时配比,提高物流行业的运输效率。借助于大数据技术对物流行业进行的优化资源配置,至少可以增加物流行业10%左右的收入,其市场价值将在5000亿左右。

8、房地产业

中国房地产业发展的高峰已经过去,其面临的挑战逐渐增加,房地产业正从过去的粗放发展方式转向精细运营方式,房地产企业在拍卖土地、住房地产开发规划、商业地产规划方面也将会谨慎进行。

借助于大数据,特别是移动大数据技术。房地产业可以了解开发土地所在范围常驻人口数量、流动人口数量、消费能力、消费特点、年龄阶段、人口特征等重要信息。这些信息将会帮助房地商在商业地产开发、商户招商、房屋类型、小区规模进行科学规划。利用大数据技术,房地产行业将会降低房地产开发前的规划风险,合理制定房价,合理制定开发规模,合理进行商业规划。大数据技术可以降低土地价格过高,实际购房需求过低的风险。已经有房地产公司将大数据技术应用于用户画像、土地规划、商业地产开发等领域,并取得了良好的效果。

9、制造业

制造业过去面临生产过剩的压力,很多产品包括家电、纺织产品、钢材、水泥、电解铝等都没有按照市场实际需要生产,造成了资源的极大浪费。利用电商数据、移动互联网数据、零售数据,我们可以了解未来产品市场都需求,合理规划产品生产,避免生产过剩。

例如依据用户在电商搜索产品的数据以及物流数据,可以推测出家电产品和纺织产品未来的实际需求量,厂家将依据这些数据来进行生产,避免生产过剩。移动互联网的位置信息可以帮助了解当地人口进出的趋势,避免生产过多的钢材和水泥。

大数据技术还可以根据社交数据和购买数据来了解客户需求,帮助厂商进行产品开发,设计和生产出满足客户需要的产品。

10、互联网广告业

2014年中国互联网广告市场迎来发展高峰,市场规模预计达到1500亿元左右,较2013年增长56.5%。数字广告越来越受到广告主的重视,其未来市场规模越来越大。2014年美国的互联网广告市场规模接近500亿美元,参考中国的人口消费能力,其市场规模会很快达到2000亿人民币左右。

过去到广告投放都是以好的广告渠道+广播式投放为主,广告主将广告交给广告公司,由广告公司安排投放,其中SEM广告市场最大,其他的广告投放方式也是以页面展示为主,大多是广播式广告投放。广播式投放的弊端是投入资金大,没有针对目标客户,面对所有客户进行展示,广告的转化率较低,并存在数字广告营销陷阱等问题。

大数据技术可以将客户在互联网上的行为记录下来,对客户的行为进行分析,打上标签并进行用户画像。特别是进入移动互联网时代之后,客户主要的访问方式转向了智能手机和平台电脑,移动互联网的数据包含了个人的位置信息,其360度用户画像更加接近真实人群。360度用户画像可以帮助广告主进行精准营销,广告公司可以依据用户画像的信息,将广告直接投放到用户的移动设备,通过用户经常使用的APP进行广告投放,其广告的转化可以大幅度提高。利用移动互联网大数据技术进行的精准营销将会提高十倍以上的客户转化率,广告行业的程序化购买正在逐步替代广播式广告投放。大数据技术将帮助广告主和广告公司直接将广告投放给目标用户,其将会降低广告投入,提高广告的转化率。

目前影响大数据产业发展主要有两个大问题,一个是大数据应用场景,一个是大数据隐私保护问题。

大数据商业价值的应用场景,大数据公司和企业正在寻找,目前在移动互联网的精准营销和获客、360度用户画像、房地产开发和规划、互联网金融的风险管理、金融行业的供应链金融,个人征信等方面已经取得了进步,拥有了很多经典案例。

但在有关大数据隐私保护以及大数据应用过程中个人信息保护方面还停滞不前,大家都在摸石头过河,不知道哪些事情可以做,哪些事情不可以做。国家在大数据隐私保护方面正在进行立法,估计不久的将来,大数据服务公司和企业将会了解大数据隐私保护方面的具体要求。在没有明确有关大数据隐私保护法规前,我们可以参考国外的隐私法,严格遵守国际上通用的个人隐私保护法,在实施大数据价值变现的过程中,充分保护所有相关方的个人利益。

最后纵观人类历史,在任何领域,如果我们可以拿到数据进行分析,我们就会取得进步。如果我们拿不到数据,无法进行分析,我们注定要落后。我们过去因数据不足导致的错误远远好过那些根本不用数据的错误,因此我们需要掌握大数据这个武器,利用好它,帮助人类社会加速进化,帮助企业实现大数据的价值变现。

以上是小编为大家分享的关于中国大数据的十大商业应用的相关内容,更多信息可以关注环球青藤分享更多干货

H. 浅谈大数据时代统计工作方法

浅谈大数据时代统计工作方法
大数据时代带来了数据信息的大爆炸,为社会生活各个领域带来巨大变革,也给统计调查工作带来了挑战。大数据时代数据呈现出总量更大、种类更繁多、操作更复杂等新特点,这对新时代做好统计调查工作提出了新的更高要求,统计调查工作方式方法面临优化和革新。当然,变革不代表取代和拒绝,而是寻求包容和提升的最佳状态,使统计调查工作在新时代可以更加科学规范。
——加大信息技术驱动力,推动统计调查各环节技术改革。信息技术革命和互联网时代催生了大数据,因此大数据时代统计调查必须以现代信息技术为工具和驱动力。一是拓宽数据收集渠道。统计调查数据的收集可以通过互联网技术利用网络搜索或者从网络公司收集行业信息。二是减少中间环节。传统统计调查层层统计上报的做法工作量较大,也容易造成数据失真。大数据时代统计调查可以利用网络传输数据平台建设等使统计数据第一时间直接从源头传输到需求者,减少中间环节的人为干扰因素,既保证数据的及时性,也能保证数据的真实性和完整性。三是严控数据质量。数据的大爆发带来的数据复杂性势必会增加数据质量控制和统计执法的难度,因此,应适应时代的特点,建立动态的、在线的数据质量把控和统计执法制度。如在数据统计调查平台建立质量控制模板,实现实时监控,并且建立统计执法与数据质量监测的便捷通道,一旦数据质量报警可以立即在统计执法上得到响应。
——提升统计调查方法的科学性、规范性。以抽样调查为例,要想快速树立抽样调查的权威性和主体地位,就必须在抽样调查的各个环节建立科学完备的方法论,包括抽样框构建、抽样方案设计、抽样估计和数据调整等各个环节。比如,要建立科学、统一、简约的抽样调查指标体系,取消过时的、利用率低的指标,改进不易取得和无法与大数据衔接的指标,增加政府及社会各界普遍关注的、与社会经济发展相适应的指标。
——加快数据共享,打破部门“数据孤岛”。目前,我国政府统计面临数据来源单一、重复调查等诸多问题,部门“数据孤岛”现象存在,阻碍了大数据时代统计调查工作的开展。从国外先进经验来看,大数据时代需要逐步采用以信息化为媒介的、基于行政记录和多种信息来源的开放式、共享式数据采集制度,即将不同政府职能部门行政管理信息资料共享化,如人口登记、房产登记、企业信息登记等,不同目的的统计调查仅是在此基础上增加或修改特定指标即可。在我国,初步的部门数据共享已经实现,如经济普查利用工商数据库和基本单位名录库等作为清查库,人口普查以公安部门户籍资料和社保信息等作为核查依据等,但是仍存在部门统计数据协调难度大、利用效率低等问题。因此,在大数据时代需要快速搭建较为完备的数据交换和共享服务平台,除去部门保密数据资料外,绝大多数的统计数据信息应该逐步实现在政府部门间、甚至面向社会公布和共享,使各种目的的统计调查能够各取所需、完善补充,有效发挥数据价值,减少社会资源浪费。
——培养新型统计调查人员,加强调查队伍建设。为应对大数据时代给统计调查工作带来的复杂性和不确定性,需要打造一支懂技术、守纪律的高素质统计调查队伍。一是人员专业化。大数据调查需要全新的现代统计方法和统计工具,特别是现代信息技术和云计算技术,因此必须组建专业程度高、针对性强的业务能手,并且定期组织培训,培养专业化统计调查人才。二是队伍稳定化。现代统计方法和统计流程大多大同小异,稳定的统计调查队伍有利于不同调查方法的融通,减少人员的适应时间,最大限度降低调查成本。近年来,不少地区探索的统计调查外包模式,在一定程度上促进了人员专业化、队伍稳定化,值得深入研究和推广。三是组织纪律制度化。2017年4月,国家统计局成立了国家统计局统计执法监督局,标志着全面依法统计依法治统工作开启了新的征程。统计数据真实性、统计调查科学性、统计执法严肃性等问题,一直是伴随着各项统计调查工作的永恒话题,只有严格遵守统计纪律,将组织建设制度化,才能从根本上杜绝统计造假等统计违法行为,才能确保统计调查科学性,维护统计数据权威性。

I. 大数据背后是个万亿市场

大数据背后是个万亿市场

大数据的商业应用将会帮助企业解决这些问题;大数据的有效利用将会提高社会消费水平,将会帮住企业提高效率、洞察客户、增加收入。大数据商业应用未来是万亿级的大市场,大数据是大生意。


大数据时代最重要的特征是人类所有的行为都被数据记录下来,无论是在电商的购买行为,旅游度假,娱乐活动,行为轨迹等,所有的人类社会行为都被各种传感器和互联网记录下来。数据记录了一切,人类社会的行为都变成了数据,用纸质媒体记录人类历史的时代已经过去,历史正在被数据以文字、数据、表格、声音、影像的方式记录了下来。中国的大数据应用主要集中在征信和精准营销,这两个市场的规模加在一起不过两千亿,但是大数据如果同所有企业的商业需求相结合,其产生的化学反应将是巨大的,市场规模将会超过万亿,大数据是个大生意。


网络连接了信息与读者,阿里连接了商品与消费者,腾讯连接了人与人。BAT所有的连接都是建立在数据基础之上的,可以认为大数据连接了一切。数据连接了消费者和商家,数据连接了客户习惯,数据连接客户喜好,数据连接了位置,数据连接了时间和空间,数据连接了历史和现在。连接一切的大数据将会反馈所连接的事物、空间和时间,通过数据记录来反馈物体的移动,客户的消费习惯,个人爱好,行为习惯,活动轨迹,运动规律等。重要的这些反馈数据能知道;你是谁、你在哪里、你喜欢什么、你在干什么、你的消费能力、以及你未来的需求等。所有被反馈的事物都被打上了一个或多个数据标签,这些具有价值的标签经过整理和分析后,将会揭示事物之间的相关性和规律,将会为个人、商家、社会带来巨大价值。


1、大数据帮助制造业规划生产,降低资源浪费


制造业过去面临生产过剩的压力,很多产品包括家电、纺织产品、钢材、水泥、电解铝等都没有按照市场实际需要生产,造成了资源的极大浪费。利用电商数据、移动互联网数据、零售数据,我们可以了解未来产品市场都需求,为客户定制产品。


例如依据用户在电商搜索产品的数据以及物流数据,可以推测出家电产品和纺织产品未来的实际需求量,厂家将依据这些数据来进行生产,避免生产过剩。移动互联网的位置信息可以帮助了解当地人口进出的趋势,避免生产过多的钢材和水泥,


2、移动大数据帮助房地产开发商规划房地产开发


房地产行业在过去为中国GDP贡献了很大力量,未来粗放型的房地产行业将会转向精细化经营,从选地到规划和从设计到建设,都需要参考当地到人口数据和消费者信息,进行科学决策;利用大数据商业应用加快房子销售速度,降低自身负债。


房地产公司可以利用人群的手机位置信息来帮助企业进行开发规划、土地选址、商铺开发等。同时利用人群到用户画像信息帮助房产公司选择合作商户,提升消费人气,最终提高房产价值。


3、移动大数据帮助餐饮零售行业进行选址和顾客导流


餐饮零售行业最关注客户流量,过去开店选址时经常安排人员在十字路口进行人流统计,利用统计的人口流动信息来决定开店地址。进入到移动互联网时代之后,智能手机的位置信息可以帮助餐饮零售行业进行开店选址,企业可以参考客户画像来决定开店的规模,以及产品的类别。


移动互联网端的用户标签和画像数据还可以帮助企业进行一些精准营销,为新开的商户导入客流。特别是在规模较大的购物商厦中,移动App端的位置导航功能,可以指引客户找到新的商户,参加促销活动。市场上已经有成熟的零售餐饮商家和移动互联网大数据公司在开店引流方面进行合作,资金利用的杠杆率超过了5倍,投入产出比较高。


4、传感器数据帮助产品进行故障诊断和预测


家电和汽车正在走向智能化,通过安装传感器,汽车和智能家电可以将运行参数和运行状态传送到厂家的云平台,厂家可以了解其产品的运行状态,零部件的老化程度,帮助厂家及时更换故障器件,延长产品使用寿命,提高安全系数。汽车行业和智能家电在物联网领域将会产生巨大的市场,云计算和大数据处理平台将起到关键的作用。


中国汽车市场的销售规模超过万亿,家电市场也有一万多亿。车联网和智能家电涉及的大数据应用市场也是巨大的,按照大数据商业变现高杠杆率的特点,其市场规模至少应该在百亿左右。


5、利用移动互联网位置信息进行精准营销


O2O已经成为了一个重要的商业模式,很多互联网企业和传统企业都在寻找O2O的应用场景,订餐、教育、家政、汽车美容等都成为O2O的应用典范。移动互联网数据具有LBS和实时特点,可以帮助企业及时连接客户,依据客户需求进行精准营销。


大型购物中心一般都设有电影院,经常存在某些电影在开场前30分钟,大量电影票还没有出售的情况。借助于手机App推送广告功能,电影院在电影放映前30分钟,可以将电影票以2折价格推送给正在周围就餐的客户。依据客户画像信息,电影票将推送给喜爱看电影的顾客,增加电影销售额。企业可以利用手机App进行广告推送,做到千人千面,依据客户喜好来进行广告推送。这种精准广告推送具有成本低、转化率高的特点,在餐饮、服装、美容、零售等行业取得了良好的应用效果。如果基于位置信息的精准广告推送被大规模的商业应用,将会促进商品流转,大幅度提高社会消费总额,帮助传统企业实现互联网+的战略。


6、电商大数据将会帮助企业优化资源配置


电商是最早利用大数据进行精准营销的行业,电商网站内推荐引擎将会依据客户的购买行为,进行关联产品的推荐。除了精准营销,电商还可以依据客户消费习惯来提前为客户备货,并利用便利店作为货物中转点,在客户下单后的短时间内,将货物送上门,提高客户体验。电商还可以利用其交易数据和现金流数据,为其生态圈内的商户提供小额贷款,也可以将此数据提供给银行,为中小企业信贷提供支持。


电商的数据量足够大,数据较为集中,数据种类较多,其商业应用具有较大的想象空间。包括预测流行趋势,消费趋势、地域消费特点、客户消费习惯、消费行为的相关度、消费热点等。依托大数据分析,电商可帮助企业进行产品设计、库存管理、计划生产、资源配置等,有利于精细化大生产,提高生产效率,优化资源配置。


7、移动大数据助力交通运输规划和管理


交通大数据应用主要在两个方面,一方面可以利用大数据传感器的数据了解车辆通行密度,合理进行道路规划。另一方面可以利用大数据分析来实现交通信号灯智能切换,提高已有线路运输能力。


在美国,政府依据某一路段的交通事故信息来增设信号灯,降低了50%以上的交通事故率。大数据可以帮助机场安排航班起降,提高管理效率;航空公司可以利用大数据提高上座率,降低运行成本;铁路公司可以利用大数据安排客运和货运列车,降低运营成本。


8、大数据帮助金融行业进行价值变现


大数据在金融行业应用范围较广,典型的案例有花旗银行利用IBM沃森电脑为财富管理客户推荐产品,美国银行利用客户点击数据集为客户提供特色服务。招商银行利用客户刷卡、存取款、电子银行转帐、微信评论等行为数据进行分析,每周给客户发送针对性广告信息。


中国目前金融行业大数据价值变主要在用户体验提升和大数据营销两个方面,其中招商银行信用卡中心和平安银行走到了金融行业的前面。


大数据在很多行业都有广泛的应用场景,例如在医疗行业,农林牧渔、能源行业、物流行业等,大数据将会是电商之后的另外一个巨大市场,结合了所有行业的商业需求之后,大数据产业的市场规模将会是个万亿级别。大数据不是电力但是比电力更能提供动力,大数据不是石油,但是比石油更能驱动企业发展。

以上是小编为大家分享的关于大数据背后是个万亿市场的相关内容,更多信息可以关注环球青藤分享更多干货

J. 大数据带来的隐患 数据垄断

大数据带来的隐患:数据垄断
在信息爆炸的社会,受众面对海量信息,往往需要花费大量的时间和精力进行筛选。但借助来自移动互联网和社会化媒体所提供的丰富数据资源(例如用户的地理位置、关系网、兴趣图谱等信息),以及日臻精确的挖掘和分析技术,媒体可以了解受众的心理、 需求以及行为习惯等,并以此为基础提供更符合受众需要的、个性化的内容服务与广告营销。这样的精准传播会加深受众好感,提高用户忠诚度。
以往触不可及的梦想在大数据时代实现了。而最深刻的革命其实不在外界,而在人类的思维领域。
人类思维的转向:人类的态度、情绪、行为等都可以变为数据进行分析和预测
人类内心深处隐秘的欲望、需求、情感是可以洞悉并预测的吗?这是一个长久以来盘亘在心理学家、行为学家、哲学家心中的困惑,而大数据时代的统计学家、数据挖掘专家则做出了肯定而乐观的回答。现在,“情感分析”、“预测模型”的应用已经渐入佳境,企业和媒体已经可以通过“情感分析”来确定社交媒体上用户群的态度,而推特(Twitter)甚至在2012年美国大选时对用户每天推文和评论的关键词进行量化跟踪,计算出“政治指数”来判断民心所向。
大数据技术使得人类的态度、情绪、行为等以往认为难以测量的方面,都可以变为数据来进行分析和预测。日常生活里的可量化维度从未得到如此淋漓尽致的挖掘与利用,而数学模型也在更广泛的领域里得到了重视。以往的统计分析强调的是因果关系,而现在的大数据研究更注重相关关系。因果关系的讨论时常不够全面,而对相关关系的把握更能够产生效用。从对“为什么”的疑问到对“是什么”的追寻,这体现了人类对世界的探索和理解有了更丰富的思路。
也许最极端的结论来自全球复杂网络研究权威艾伯特-拉斯洛·巴拉巴西。在一书中,他宣称人类行为93%是可以预测的:“当我们将生活数字化、公式化以及模型化的时候,我们会发现其实大家都非常相似。我们都具有爆发式,而且非常规律。看上去很随意、很偶然,但却极其容易被预测。”“爆发”即指人们的工作、娱乐及其他种种活动都有间歇性,会在短期内突然爆发,然后又几乎陷入沉寂。人类行为并非随机的小概率事件,而是在意向作用下非常规的突变行为。
不论巴拉巴西的理论是否赢得主流的共识,这些发现至少表明,在技术以外,大数据时代向人类昭示出越来越多富有启发意义的世界观和历史观。
大数据时代的隐忧:数据垄断的困境
首先,数据的可接近性并不就使得其使用合乎伦理。大数据为监测和预示人们的生活提供了极大的方便,然而个人隐私也随之暴露在无形的“第三只眼”之下。无论是电子商务、搜索引擎还是微博等互联网服务商都对用户行为数据进行了挖掘和分析,以获得商业利益,这一过程中不可避免地威胁到普通人的隐私。以往人们认为网络的匿名化可以避免个人信息的泄露,然而大数据时代里,数据的交叉检验会使得匿名化失效。许多数据在收集时并非具有目的性,但随着技术的快速进步,这些数据最终被开发出新的用途,而个人并不知情。不仅如此,运用大数据还可能预测并控制人类的潜在行为,在缺乏有效伦理机制下有可能造成对公平、自由、尊严等人性价值的践踏。
其次,越大的数据并非总是越好的数据。对数据的盲目依赖会导致思维和决策的僵化。当越来越多的事物被量化,人们也更加容易陷入只看重数据的误区里。关于数据在何时何地有意义的争议,已经不再局限于“标准化考试是否能够衡量学生素质”之类的讨论,而是拓展到更加广阔的领域。另一方面,如果企业甚至政府在决策过程中滥用数据资料或者出现分析失误,将会严重损害民众的安全和利益。如何避免成为数据的奴隶,已经成为迫在眉睫的问题。
第三,大数据的有限接入产生新的垄断和数码沟。面对大数据,谁能接入?为何目的?在何种情境下?受到怎样的限制?数据大量积累的同时,却也出现了数据垄断的困境。一些企业或国家为了维护自己的利益而拒绝信息的流动,这不仅浪费了数据资源,而且会阻碍创新的实现。与互联网时代的数码沟问题一样,大数据的应用同样存在着接入和技能的双重鸿沟。对于数据的挖掘和使用主要限于那些具有计算机开发和使用背景的专业人士,这也就意味着谁将占据优势、谁会败下阵来,以及由此而来的面对“谁更有权力”的拷问。
进入大数据时代,数据的掌握者们是否会平等地交换数据,促进数据分析的标准化,在数据公开的同时如何与知识产权的保护相结合,不仅涉及到政府的政策,也与企业的未来规划息息相关。

阅读全文

与大数据利用什么造成社会资源浪费相关的资料

热点内容
如何打开软件内的数据 浏览:490
无人机主要用到哪些技术 浏览:701
结算产品名称有哪些 浏览:611
applewatch能监测什么数据 浏览:514
本地信息站可以做什么 浏览:873
电信公司代理哪些业务最挣钱 浏览:356
化工产品销售属于什么销售 浏览:516
怎么查找已读信息 浏览:285
交易猫扣多少钱 浏览:29
洗洁剂泡黑的产品怎么办 浏览:809
期货交易需要了解什么线 浏览:957
北京哪个花卉市场有卖米兰 浏览:732
货代进化到什么程序 浏览:740
如何打造产品新奇特 浏览:206
施工员怎么看技术总结 浏览:776
松阳有哪些代理公司 浏览:373
兰州五金围挡市场有哪些 浏览:678
交易所怎么挂牌 浏览:549
三菱m80数控铣怎么才能检查程序 浏览:478
岩板代理怎么样 浏览:391