导航:首页 > 数据处理 > 如何提升数据分析能力

如何提升数据分析能力

发布时间:2022-02-23 03:35:12

⑴ 如何提高分析能力

第一步:数据准备:(70%时间)

1.获取数据(爬虫,数据仓库)

2.验证数据

3.数据清理(缺失值、孤立点、垃圾信息、规范化、重复记录、特殊值、合并数据集)

4.使用python进行文件读取csv或者txt便于操作数据文件(I/O和文件串的处理,逗号分隔)

5.抽样(大数据时。关键是随机)

6.存储和归档

第二步:数据观察(发现规律和隐藏的关联)

1.单一变量:点图、抖动图;直方图、核密度估计;累计分布函数

2.两个变量:散点图、LOESS平滑、残差分析、对数图、倾斜

3.多个变量:假色图、马赛克图、平行左边图

第三步:数据建模

1.推算和估算(均衡可行性和成本消耗)

2.缩放参数模型(缩放维度优化问题)

3.建立概率模型(二项、高斯、幂律、几何、泊松分布与已知模型对比)

第四步:数据挖掘

1.选择合适的机器学**算法(蒙特卡洛模拟,相似度计算,主成分分析)

2.大数据考虑用Map/Rece

3.得出结论,绘制最后图表

循环到第二步到第四步,进行数据分析,根据图表得出结论完成文章。

以业务为核心做数据分析

“无尺度网络模型”的作者艾伯特-拉斯洛·巴拉巴西认为——人类93%的行为是可以预测的。数据作为人类活动的痕迹,就像金矿等待发掘。但是首先你得明确自己的业务需求,数据才可能为你所用。

数据为王,业务是核心

1.了解整个产业链的结构

2.制定好业务的发展规划

3.衡量的核心指标有哪些

有了数据必须和业务结合才有效果。首先你需要摸清楚所在产业链的整个结构,对行业的上游和下游的经营情况有大致的了解。然后根据业务当前的需要,指定发展计划,从而归类出需要整理的数据。最后一步详细的列出数据核心指标(KPI),并且对几个核心指标进行更细致的拆解,当然具体结合你的业务属性来处理,找出那些对指标影响幅度较大的影响因子。前期资料的收集以及业务现况的全面掌握非常关键。

思考指标现状,发现多维规律

1.熟悉产品框架,全面定义每个指标的运营现状

2.对比同行业指标,挖掘隐藏的提升空间

3.拆解关键指标,合理设置运营方法来观察效果

4.争对核心用户,单独进行产品用研与需求挖掘

发现规律不一定需要很高深的编程方法,或者复杂的统计公式,更重要的是培养一种感觉和意识。不能用你的感觉去揣测用户的感觉,因为每个人的教育背景、生活环境都不一样。很多数据元素之间的关系没有明显的显示,需要使用直觉与观察(数据可视化技术来呈现)。

3. 规律验证,经验总结

发现了规律之后不能立刻上线,需要在测试机上对模型进行验证。

⑵ 四步提升数据分析能力成熟度

四步提升数据分析能力成熟度_数据分析师考试

配备合适的人才和技术,您可以做到未雨绸缪,快速响应现实中存在着数量惊人的公司,在需要作出影响其公司底线的关键决策的时刻,缺乏及时有效的信息。想象一下这样的一个画面:某汽车生产厂家由于安全故障问题而面临大量召回的风险;或者社交媒体上充斥着对某旅行社的负面评价;--如果在这些事件发生之前或者在危险还没升级之前,相应的危机可以得到解决的话,相信无论是汽车生产厂家还是旅行社,都会大受裨益。幸运的是,我们知道一个公司/组织能否对未来作出快速的响应,与其内部预测分析能力的成熟度直接相关。而这一切又取决于合理的人才配备、分析流程以及分析技术的部署和应用,全副的武装可助您解燃眉之急,并赋予您处理实际业务中碰到的疑难困惑的能力,还能够对潜在的风险作出预警,当然所有这些都建立在对现有数据进行分析的基础上。接下来的四步曲可以帮助您提升组织内部敏捷的分析能力,即在事情还未发生之前及时作出预警,从而减少未来的不确定性。第一步: 把分析置于首要地位提升组织内部分析能力最关键的一步就是要让所有的员工都意识到基于信息决策的重要性。关于数据分析重要性的宣介活动可以通过多种形式:包括视频教学、在线研讨会以及关于数据分析实践的社群共享,或者直接给大家展示可视化分析的结果等。总之,不管通过何种方式,要让大家清楚的认识到高级的数据分析技术可以带来重要的价值应用。同时,你也可以盘点并梳理一下组织内部现有的分析资源:比如挑选不同部门内部对数据敏感、有一定分析能力的员工;记录组织内部有哪些关键的数据分析技术应用,列出关键的业务应用领域。我们还建议推举出分析领域的专门负责人,由这个人负责主要数据分析战略的落实,保证组织在接下来各个阶段的分析能力建设的成功部署。第二步: 进行分析试点该阶段通过梳理和使用现有的分析资源,明确公司的数据分析能力。通过将组织的现状和将来的战略目标进行对比,确定存在哪些新的机会,分析可以在其中起到关键作用。再进一步,分析团队需要考虑如何使得分析预测的结果更加精确和及时,以及这些分析结果如何在业务中得到更好的应用。数据分析的整个流程是该阶段的关键,一定要特别注意。我们既要进行深入的数据探索和建模,还要考虑模型的修正、部署以及监督应用;通过详细回顾分析的整个流程,您将有可能发现哪里存在不足,以及哪些地方需要改进,进而形成数据分析相关的规章制度和相关流程。第三步: 组建分析团队组建内部自发的分析团队,并鼓励形成凝聚力强的分析社区。内部的分析专家可以相互进行探讨,对组织内部数据分析建设提出建议,并通过有效的维系促进分析能力的建设和发展。小组会议,研讨会以及用户交流会或者博客等形式都有助于提升数据分析的应用和升级,在分析能力建设的后期,交流对于公司整体数据分析能力的提升发挥着极其重要的杠杆作用。第四步: 通过分析预测调整战略部署到了该阶段就意味着所有数据分析相关的基础架构和配备都已经部署完毕,组织根据业务变化的需要可以借助强大的分析能力作出快速响应。比如针对业务需要的新的模型可以很快的建立和部署应用,而且比以往的预测结果更加精确,从而可以提供更加精准的信息。在该阶段,分析的目的应该从简单的回答战术性问题转移到更具前瞻性的战略问题上来,该阶段的分析包括对一些有可能发生的情景进行测试,通过模拟、优化以及其他前沿的统计学方法排除一些发生概率低的可能性结果。该工作可以通过一个集中的分析平台来进行。除此之外,不同形式的海量数据的应用,包括文本数据和社交数据,也可以帮助预见未来,并激发创新性的想法以吸引消费者,同时赢得市场先机。结论要完成以上四步的实施并非易事,也不能一蹴而就。分析能力的培养需要领导层的决心和信心以及其持续性的支持和努力,另外对人才储备和分析工具进行的投资同样也是成功的关键。提升组织的分析能力成熟度需要多方面的工作,包括合理的人才配备、分析流程以及分析技术的部署和应用更关键的是数据资产的质量和完备性。但是高效灵活的数据分析带来的回报是不可估量的-有可能是决定性的成败!

以上是小编为大家分享的关于四步提升数据分析能力成熟度的相关内容,更多信息可以关注环球青藤分享更多干货

⑶ 我们如何提升自己的数据策略分析能力

很多同学抱怨:每天对着大堆数字,却看不出个名堂。反而有些做业务的人,看几个数字就能马上做出准确判断。咋回事!看着数据没有感觉,是缺少数据洞察力的表现。数据洞察力和操作工具没有关系,完全是一种思维习惯。建立起来以后,不单单对工作有帮助,在生活中用处也很大,今天我们系统讲解下。
1
直观感受下啥叫数据策略分析能力
数字本身没有啥含义,数字+业务场景,才有了具体业务含义。注意,第一张图上的小帅哥会暴走,并不是因为姑娘180身高,而是因为姑娘180把他比得太矮了(且因此受过嘲讽)。“比”才是问题的关键。所以数据本身不形成判断,数据+标准才能形成判断。想读懂数据的含义,一定得看具体业务场景下,业务判断的标准是什么(如下图)。
有了数据、业务场景、判断标准,我们才能形成基本的数据洞察。这三者缺一不可。少了数据,就会陷入:“我看到一个黑苹果,所以全天下苹果都是黑色的”这种窘境。少了业务场景,就会出现:“一个女人十个月生娃,十个女人一个月就能生出来吧”这种糗事。少了判断标准,就会鸡同鸭讲,大家扯了半天,发现说的“好/坏”根本不是一类。
2
培养洞察力的基本思路
既然洞察力来自数据、业务场景、判断标准的组合,培养洞察力,也是从这三个方向出发,包括:
遇事找数据细致了解业务场景清晰判断标准积累特定场景下,数据判断的结论在新场景中使用结论,检验效果持续积累正确结论,修正错误结论
这一段话看起来很官方,可实际操作起来非常简单,并且我们每个人、每天都在实践。就比如找对象,懵懂的小男生都是挑剔热巴太胖、幂幂头秃,幻想自己找个仙女下凡。可真自己约会相亲追过几个女生,就发现“哦,原来现实中找个美女那么难呀!”
然后真找个“美女”相处一段时间,就发现比起长相,性格、爱好、生活能力、工作能力哪个都更重要。半夜,小哥一个人独自抽着烟,对着月亮,思考:“为毛我要花钱花力气请个姑奶奶回来伺候,我欠抽吗!”的时候,他的洞察力就有了质的飞跃。即使以后再看到漂亮小姑娘,他也会立即明白:这不是我的菜!
在现实生活中,制约洞察力的关键,往往是数据。因为生活中信息不对称问题严重,收集数据的难度太高,还要付出时间、金钱甚至前途、未来这种高额成本。所以在生活中,我们常采用的是有限理性的策略。在可行范围内,尽量用少的数据做决策。或者干脆采用跟随策略,跟着那些比我们优秀的人混。但在企业里,则是完全不同的另一幅场景。
3
培养数据洞察力的难点
在企业工作中,培养数据洞察力最大的难点,是数据、业务场景、标准三者是相互分离的。
做数据分析的同学们不了解业务场景,只能对着数据瞎猜;业务部门的人自己稀里糊涂,或者各怀鬼胎,故意扭曲判断标准;对数据重视度不够,基础数据采集不全,遇到事都喜欢讲个案,不看数据全貌;
这些糟糕状况,都会导致做数据分析的同学们很难积累经验。于是我们常常发现,企业里最有洞察力的人往往是老板。因为在老板那里这三者是透明的,所以即使不操作基础数据,他老人家也能明察秋毫。但这对数据分析师可不是件好事。因为老板还等着我们给意见呢,事事都让老板跑在我们前边,会引发不满的。所以做数据的同学们还是得自己锻炼下洞察力。
4
培养数据洞察力的步骤
很多同学一说要提升洞察力,最喜欢干这三件事:
找《XX行业2020-2025全景洞察报告(重磅深度!)》找XX行业数据指标体系思维导图,挑个最密密麻麻的保存在D盘-干货文件夹加各种数据分析群,问:“有没有牛X的数据分析报告看看,有洞察那种,发来看看”
这三种方法完全没用。这就像一个想谈恋爱的小伙,每天在网上看美女图片一样,自己不动手练,不具体思考,是不可能提升洞察力的。永远不动,永远不会。得想办法自己动手才行。而且往往这些东西内容太多,最后保存在D盘的玩意,你也永远不会看。所以最好从一个具体小点出发。
第一步:从一个场景一个指标开始
做数据的同学,优势在于手上有数据,可以随时查。劣势在于不了解业务场景。因此把数据结合到业务场景中,是破题的关键。最好找一个自己熟悉的业务,有好朋友的部门入手。从理解结果指标开始(如下图)。
第二步:从极值到中间值
理解了指标业务含义,想要形成判断,可以从白犀牛开始——先看指标极大、极小值的时候。这些情况是什么场景,发生什么问题,有什么应对。有了对极值的了解,就行掌握基础的判断标准,也能积累分析假设和分析逻辑。当遇到没有那么极端的情况时,可以顺着已经积累的分析逻辑去理解。实在解读不了,也可以选择再观察观察,看看数据往哪个极端方向发展(如下图)。
第三步:从静态到动态
当我们对静态场景积累的足够的洞察的时候,就能解读动态场景。本质上,动态场景只是一系列静态场景的合集。要额外提醒的是:一个业务变化往往有规律性。一个连续的规律,本身是具有业务含义的。积累周期形态的规律,可以从点到线,提升洞察能力。
第四步:从单指标到多指标
对单指标有了洞察积累,可以往多指标扩展,掌握了结果指标的判断,可以联系过程指标一起看。注意:多指标不是单指标的堆积,拼在一起的时候,也不是每个指标越多越好的。多指标组合时,在特定业务场景下会形成特定的形态,基于形态的解读能做出更准确的判断(如下图)。
掌握了基础形态,后续还能持续观察形态变化,积累更多经验,这样就慢慢能由简入繁,越来越多积累经验,积累多了自然能举一反三了。
要注意的是,换个行业,换个公司,换个产品,换个发展阶段,具体场景都会变化。所以企图追求“万古不变的数据分析真理”,只会让自己在玄学道路上越走越远。想提升洞察力,就多多积累具体场景碎片,提升具体分析能力。具体问题,具体分析,这句话永远不过时。

⑷ 如何提高数据分析能力

基础理论知识:数理统计、模型原理、近期市场的调研等;

⑸ 如何提升数据分析能力

在运营的过程中,关于数据的异常变化一定要做好统计,通过这些数据分析出整体的运营策略的正确性

⑹ 怎样提升数据分析能力

⑺ 在管理中如何培养数据分析能力

一、熟悉公司业务
首先要熟悉公司业务及流程。若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的实用价值。数据分析的最终目的是作为一种分析方法来为整个项目服务。
二、明确分析目的
常常会有人问这些数据可以做什么分析?这是典型的“为了分析而分析”。数据分析的前提是先明确分析目的,这样的分析才有意义;
三、运用营销、管理等理论
营销、管理等理论是数据分析的指导思想,使分析思路系统化。例如4P理论等,从哪几个维度去分析?考虑哪几个方面?只有这样做才能使数据分析变得有血有肉有脉络,真正做到理论指导实践;
四、掌握有效数据分析方法
了解数据分析流程,掌握数据分析基本原理与方法,并灵活运用到实践工作中,不论简单还是复杂的分析方法,只要能解决问题的方法就是好方法;
五、玩转数据分析工具
数据分析工具,建议先玩转excel数据透视表,有兴趣、实践、需要的话,再学习SPSS、SAS等统计分析工具。同样,只要能解决问题的工具就是好工具;
六、学会用图表说话,玩转PPT等工具
学会如何用图表有效展现分析结果,PPT有助于数据分析结果展现,达人必备;水晶易表亦对分析结果的展现有很大帮助,选择性使用;思维导图可帮助理清分析思路,根据需要选用。光做数据分析是不够的,真正要做的是将数据分析结果清晰地展现给其他人看;
七、勤思考、多动手、多总结
需要经常发问为什么是这样的、为什么不是那样的。只有这样勤于思考才有突破点;
光靠脑袋想是不够的,需要多动手实践,不要怕错,大不了错了重来,数据分析就是一个不断假设、验证的过程;
不断总结分析方法、分析思路、分析流程,在总结中前行;
八、关注行业动态
关注数据分析行业动态,积极地学习他人的数据分析经验;
九、收藏几本分析秘籍
可在家中收藏一些使用的分析工具书,以便随时查阅,如《用图表说话》、《excel图表之道》等;

数据分析不仅是个工具,而且是门艺术,希望能与大家共勉,提高自己的数据分析能力。

⑻ 大学生如何提高数据处理能力

如何提高数据分析能力? (2012-02-19 16:19:19)转载▼
标签: 数据分析 数据挖掘 杂谈
作为一个合格的咨询师,除了快速的学习能力和敏捷的分析能力,强大的数据分析能力也是必不可少的。笔者根据自己的经验,总结出以下几个对提高数据分析能力有帮助的方法,以供参考。一、熟悉公司业务 首先要熟悉公司业务及流程。若脱离行业认知和公司业务背景,分析的结果只会是脱了线的风筝,没有太大的实用价值。数据分析的最终目的是作为一种分析方法来为整个项目服务。二、明确分析目的 常常会有人问这些数据可以做什么分析?这是典型的“为了分析而分析”。数据分析的前提是先明确分析目的,这样的分析才有意义;三、运用营销、管理等理论 营销、管理等理论是数据分析的指导思想,使分析思路系统化。例如4P理论等,从哪几个维度去分析?考虑哪几个方面?只有这样做才能使数据分析变得有血有肉有脉络,真正做到理论指导实践;四、掌握有效数据分析方法 了解数据分析流程,掌握数据分析基本原理与方法,并灵活运用到实践工作中,不论简单还是复杂的分析方法,只要能解决问题的方法就是好方法;五、玩转数据分析工具 数据分析工具,建议先玩转excel数据透视表,有兴趣、实践、需要的话,再学习SPSS、SAS等统计分析工具。同样,只要能解决问题的工具就是好工具;六、学会用图表说话,玩转PPT等工具 学会如何用图表有效展现分析结果,PPT有助于数据分析结果展现,达人必备;水晶易表亦对分析结果的展现有很大帮助,选择性使用;思维导图可帮助理清分析思路,根据需要选用。光做数据分析是不够的,真正要做的是将数据分析结果清晰地展现给其他人看;七、勤思考、多动手、多总结 需要经常发问为什么是这样的、为什么不是那样的。只有这样勤于思考才有突破点; 光靠脑袋想是不够的,需要多动手实践,不要怕错,大不了错了重来,数据分析就是一个不断假设、验证的过程; 不断总结分析方法、分析思路、分析流程,在总结中前行;八、关注行业动态 关注数据分析行业动态,积极地学习他人的数据分析经验;九、收藏几本分析秘籍 可在家中收藏一些使用的分析工具书,以便随时查阅,如《用图表说话》、《excel图表之道》等; 数据分析不仅是个工具,而且是门艺术,希望能与大家共勉,提高自己的数据分析能力。
参照这个来提升自己。希望对你有所帮助

⑼ 如何提升数据分析能力

1、数据支持。任何一个企业品牌要想进入大数据营销,首先就要制定一个数据收集和整理的要点,明确大数据技术对于企业品牌的营销发展意义。知道怎样合法的收集到自己需要的数据,以及后续如何处理这些数据,如何通过这些数据来为企业盈利等等。这些基本的定义是企业开展大数据营销的第一步。

2、数据使用工具。如果企业已经做好了大数据营销的准备,并且已经有了自己所需的数据资源。那么,这时候就需要一定的大数据分析工具了。市面上的大数据工具给企业商家带来了全新的分析方式,基于成熟的分析结构、视觉化以及数据管理系统也迅速地改变着企业的分析方式,这些数据工具的出现极大的方便了企业的大数据营销进程。

3、大数据人才。现在大数据的火爆,自然而然大数据的人才也就十分的稀缺。一个成功的团队离不开人员的良好配置,大数据人才往往以数据分析人才为主,大致分为以下几种:数据科学家,提供有关统计、相关性和质量等的专业技能;商业分析师,从商业的角度出发,甄别数据科学家从纯粹数据分析角度发现的异常数据以及一般性规律,发掘出其中与公司业务发展紧密相关的数据和规律并根据重要性进行排序;技术专家,帮助提供收集、整理和处理数据所需的硬件和软件解决方案。

关于如何提升数据分析能力,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

⑽ 怎样提升数据分析能力

1、数据支持。任何一个企业品牌要想进入大数据营销,首先就要制定一个数据收集和整理的要点,明确大数据技术对于企业品牌的营销发展意义。知道怎样合法的收集到自己需要的数据,以及后续如何处理这些数据,如何通过这些数据来为企业盈利等等。这些基本的定义是企业开展大数据营销的第一步。

2、数据使用工具。如果企业已经做好了大数据营销的准备,并且已经有了自己所需的数据资源。那么,这时候就需要一定的大数据分析工具了。市面上的大数据工具给企业商家带来了全新的分析方式,基于成熟的分析结构、视觉化以及数据管理系统也迅速地改变着企业的分析方式,这些数据工具的出现极大的方便了企业的大数据营销进程。

3、大数据人才。现在大数据的火爆,自然而然大数据的人才也就十分的稀缺。一个成功的团队离不开人员的良好配置,大数据人才往往以数据分析人才为主。

阅读全文

与如何提升数据分析能力相关的资料

热点内容
怎么查询结婚信息查询系统 浏览:679
对电子数据的提取法律规定是如何 浏览:457
高客单价产品如何做站外推广 浏览:714
2021哪个签证代理公司好办理 浏览:849
牦牛可以做成哪些产品 浏览:776
宝马售后技术哪个最好 浏览:115
山东哪个医院腹腔镜技术好 浏览:200
股票交易用哪个平台会好一点 浏览:286
按摩店心灵探索是什么程序 浏览:597
不懂技术的是怎么成功的 浏览:689
花生的产品有哪些 浏览:977
股票交易如何选价格 浏览:996
如何给产品标签 浏览:439
四川南充有哪些水果批发市场 浏览:376
从市场买回来海带怎么清洗 浏览:394
程序员一般精通多少门 浏览:930
技术转做销售怎么样 浏览:376
为什么警察会抓捕犯罪人信息 浏览:562
otg数据线用什么手机 浏览:189
重庆生发产品有哪些 浏览:127