Ⅰ Gbase 8a 数据加载工具有什么优点
技术产品规范/项目名称 设计方案 朗新云商项目开发部 2017年10月 目录1概述11.1项目介绍11.1.1三级1修改履历 版本号|修改编号|更改简要描述|更改人|批准人|GBase8aMPP Cluster 支持SQL92 中定义的绝大多数数据类型,同时也支持SQL99 和S...
2020-09-13回答者:网络文库精选1个回答
GBase8a怎么样
答:南大通用大规模分布式并行数据库集群系统,简称:GBase8aMPP Cluster,它是在GBase8a列存储数据库基础上开发的一款Shared Nothing架构的分布式并行数据库集群,具备高性能、高可用、高扩展等特性,可以为各种规模数据管理提供高性价比的通用...
2020-12-07回答者:nksdq2个回答
国内的数据可视化的软件那个好一些?优点是什么
答:洞见作为一款专业的时空大数据可视化工具,能够一键链接已有服务、Excel等外部数据,通过简单拖拽即可将时空数据转换成适当的、专业的可视化地图和统计图表,将隐藏在数据中的信息直观、多维、实时的展示,全面激活数据价值,为分析和决策提供有...
2020-05-09回答者:麋鹿zhjx10个回答1
GBase8a对非结构化数据支持怎么样?如何存储和访问?
答:GBase8a支持结构化数据和非结构化数据的统一管理,具体如下: (1)支持将非结构化数据以BLOB数据类型的方式存储在Hadoop上; (2)支持通过MPP集群数据库表中的URI字段访问Hadoop上的BLOB数据类型的数据。
Ⅱ 大数据分析需要哪些工具
说到大数据,肯定少不了分析软件,这应该是大数据工作的根基,但市面上很多各种分析软件,如果不是过来人,真的很难找到适合自己或符合企业要求的。小编通过各大企业对大数据相关行业的岗位要求,总结了以下几点:
(1)SQL数据库的基本操作,会基本的数据管理
(2)会用Excel/SQL做基本的数据分析和展示
(3)会用脚本语言进行数据分析,Python or R
(4)有获取外部数据的能力,如爬虫
(5)会基本的数据可视化技能,能撰写数据报告
(6)熟悉常用的数据挖掘算法:回归分析、决策树、随机森林、支持向量机等
对于学习大数据,总体来说,先学基础,再学理论,最后是工具。基本上,每一门语言的学习都是要按照这个顺序来的。
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。
3、学习数据分析工具,软件结合案列的实际应用,关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,stata,R,Python,SAS等。
4、学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
Ⅲ 数据治理的数据治理成功的关键——元数据管理
独立企业数据集成软件提供商Informatica公司(纳斯达克代码:INFA)认为:数据治理成功的关键在于元数据管理,即赋予数据上下文和含义的参考框架。经过有效治理的元数据可提供数据流视图、影响分析的执行能力、通用业务词汇表以及其术语和定义的可问责性,最终提供用于满足合规性的审计跟踪。元数据管理成为一项重要功能,让 IT 部门得以监视复杂数据集成环境中的变化,同时交付可信、安全的数据。因此,良好的元数据管理工具在全局数据治理中起到了核心作用。 Informatica将数据治理定义为“在组织范围内,对流程、政策、标准、技术和人员进行职能协调和定义来将数据作为公司资产管理,从而实现对准确、一致、安全且及时的数据的可用性管理和可控增长,以此制定更好的业务决策,降低风险并改善业务流程”。
数据治理着重于交付可信、安全的信息,为制定明智的业务决策、有效的业务流程并优化利益相关方交互提供支持。因此,数据治理本身并非是结果,而仅仅是方法:即通过数据治理来支持最关键的业务目标。 正如某家大型银行的高管所言:“如果没有数据治理,任何元数据管理方案注定会失败。”元数据管理可作为一项重要功能,让IT部门得以管理复杂数据集成环境中的变化,同时交付可信、安全的数据。当业务利益相关方参与这一进程并接受对数据参考框架的责任,其优势将变得更有说服力。此时,企业就能将业务元数据与基层的技术元数据进行关联,为全公司范围内的协作提供词汇表和背景资料。
例如,当业务用户要求其在 IT 部门的搭档在报告或分析中显示“净收入”,就无需再提问“哪种净收入——财务、销售还是市场营销?”除提供其他优势外,良好的元数据管理还可通过免除此类重要问题,促进数据治理:
· 这个业务术语的含义是什么?
· 在(几个相似的)业务术语中应当使用哪一个?
· 该术语的来源是什么?
· 该数据从数据源转移到目标时是如何进行转换的?
· 由谁负责该术语的定义、记录和管理?
· 谁修改过该术语?如何及何时进行修改?
· 哪些政策和规则适用于该术语?(示例包括数据质量规则、安全屏蔽规则、存档规则和数据保留政策)
· 修改环境中的某一特定数据对象会对其他数据对象产生哪些影响?
· 在不对可能使用相同数据对象的其他报告和分析造成影响的前提下,需要多长时间来实施环境变更? 一系列公司方案推动了数据治理的进展,也由此带动了元数据管理。这些方案包括:
· 通用业务词汇表(简单的数据管理)。这种“小规模试水”方法着重于某一特定问题或业务部门的通用业务词汇表。
· 全面数据治理(或数据管理策略)。这是一种更近似由上至下的方式,通常用于涉及企业内一系列业务部门的较大规模计划,并以按多个阶段(如果不是更长时间)进行管理的计划中的多个商机为目标。
· 合规。此类方案的推动因素是为遵守国际、国家、当地或行业法规的需求。合规——通常由一个治理、风险与合规性(GRC)职能部门进行管理,显然与数据治理唇齿相依。在发现、分析和记录企业的多项内部数据治理要求的同时,还必须与适用外部法规的相关特定要求进行统筹协调。其中部分示例包括:
· 银行业:Basel II、Basel III、多德弗兰克法案(Dodd Frank)、洗钱法案
· 保险业:偿付能力监管标准II(Solvency II )
· 医疗保健:HITECH Act、HIPAA
· 一般金融服务:萨班斯—奥克斯利法案
· 元数据管理。这是更上一层楼的做法,将元数据管理和数据治理作为“最佳实践”与各个新的业务方案挂钩。该方案对业务案例和项目范围进行定义。在多家未能成功实施较大型数据治理方案的公司中,这一方法则取得了成功。 几乎所有企业都面临着管理数据量、速度和种类的挑战。Hadoop/MapRece 技术在复杂数据分析能力以及按相对低廉的成本实现最大数据扩展性方面提供了一些有趣的优势。Hadoop 在不久的将来取代关系性DBMS的可能性不大,这两项技术更有可能并存,因为它们各有独到之处。虽然用于管理和分析数据的技术可能不同,元数据管理和数据治理的目标应始终保持不变:为支持良好的业务决策提供可信、及时且相关的信息。不存在所谓的“大数据治理”或“大数据元数据管理”——相反,这是一个将全局企业数据治理和元数据管理活动加以扩展来包容全新数据类型和数据源的问题。
Hadoop带来的挑战之一就是元数据管理。如果没有良好的元数据管理和数据治理,Hadoop将会缺乏透明度、可审计性以及数据的标准化与重复利用能力。企业仍将需要对数据相关关键信息的可见性,例如其来源、质量和所有权,否则就必须承受Hadoop变成环境内的又一个数据孤岛的风险。在该领域涌现的 HCatalog 和Hive /HiveQL等新技术将使得从非结构化和半结构化数据中收集元数据变得更加简易,从而实现Hadoop上的数据沿袭。这些功能对于将Hadoop集成入总体数据集成框架,以防止大数据在企业中遭到孤立隔绝,可如同任何其他数据源一样进行治理至关重要。 Informatica可提供功能齐全而又稳健可靠的工具,具备交付可信、安全的数据和启动成功的元数据管理方案所需的全部精确功能。Metadata Manager & BusinessGlossary可提供独一无二的多项优势,让IT经理能够尽量降低在实施变更时对关键业务数据造成损害的业务风险。
InformaticaMetadata Manager & Business Glossary是 InformaticaPowerCenter Standard Edition的关键组件之一。它可提供为数据治理方案奠定基础所需的核心元数据管理工具。Metadata Manager & Business Glossary是一项单个产品,配备一个共享的元数据信息库。它具备两个用户界面,供两类截然不同的用户使用:
· MetadataManager 可让 IT 人员处理技术元数据。
· Business Glossary 可让业务和 IT 管理员协同管理业务元数据。
ITSS WG1发布的白皮书表明
数据治理模型包括三个框架:范围,促成因素和执行及评估。他们每个方面都包含许多组件来进行展示和描述它们是如何工作的。该框架显示数据治理内部的逻辑关系。范围展示了我们应该关注什么,促成因素展示了数据治理的推动因素,执行和评估展示了如何实现治理的方法。该DG模型可以通过三个框架帮助我们理解数据治理。
数据治理的范围包括四个层次的内容。首先,应该 有一个治理要素负责管理其它管理要素,保证治理与管理的一致性。其次,下面的三个层次分别列示了需要治理的数据管理要素,其中价值创造层列示了通过数据治理所创造的价值服务。价值保证层描述了一个组织治理数据时重要保证服务。基础数据服务层描述了一个数据治理的基础数据服务。
Ⅳ 好用的数据分析工具有哪些
好用的数据分析工具有很多,比如广州思迈特软件Smartbi有限公司(思迈特软件Smartbi)。Ⅳ 有什么好的设备管理软件
设备维护管理软件通过系统化地记录设备故障、规范巡检流程和完成工作,并且提供整体解决方案,可为企业搭建起一个强大的技能知识数据库,从而辅助技术团队的日常工作,并为管理层提供决策支持。
1.战略化管理
允许用户集中登记管理企业所有的技术类资产,并可根据不同的(组织结构、地理、功能和技术类别)结构对设备进行管理。除了基本的设备台账外,在构建企业资产数据库的同时,系统还会记录与设备相关的技术参数、备件明细、安全工作指导手册等详细的工程信息,并利用系统自有的屏幕编辑器工具将这些数据以直观的图形化的形式进行展现。
2.资源管理
通过系统自带的计划和优化工具,以日历的形式展现企业所有的计划类工作及所需的资源(包括人员、供应商、技能、设备、工具、备件和设施等)。
3.项目管理
项目模块专为维护工作的准备、计划、控制和追溯过程而设计,涵盖任务准备、资源、设备、供应商、设施以及所需的时间和费用等要素,并可根据需要在系统中生成工单。在企业中,这类项目通常为计划大修、改造、新生产线/装置的施工和安装、 改进项目等。
好的解决方案可在电脑端、手机端、平板上运行,可几乎与任何后台维护管理及维护管理系统实现数据同步。移动端为了规范落实运维I作中巡检数据,电脑端实施CMMS系统,收集手机端数据后量化系统分析改进。
传统的设备维护管理软件供应商通常将系统安装完毕视为项目实施的最后一步,然而,计算机化的系统只是辅助企业达到预计管理目标的一套辅助工具,重点是要通过系统的实施部署来帮助企业制定维护管理策略,保证其能执行并贯彻落实到每个个人,并在组织内部形成持续改进的管理机制。
具体而言,在数据采集阶段,软件供应商需要和企业不断地沟通,了解对方的资产设备情况,选择合适的标准(比如ISO 9001 -2015质量体系认证)确保高质量、高精确度、 高效率地完成数据采集工作。次,企业需要在配备设备维护管理软件的前期阶段,根据企业的实际情况,调试软件系统功能配置,并开展完善的培训,保证每- -位维护人员能够熟练使用软件系统,完成设备运维巡检流程和后台数据分析。
最后,软件供应商需要定期回访和对接客户需求,根据实际情况,改进现有软件配置,从而提高软件的使用率和改善设备运维的现状,提高企业的综合收益率。
Ⅵ 如何成为一个数据分析师需要具备哪些技能
接下来我们分别从每一个部分讲讲具体应该学什么、怎么学。
数据获取:公开数据、Python爬虫
如果接触的只是企业数据库里的数据,不需要要获取外部数据的,这个部分可以忽略。
外部数据的获取方式主要有以下两种。
第一种是获取外部的公开数据集,一些科研机构、企业、政府会开放一些数据,你需要到特定的网站去下载这些数据。这些数据集通常比较完善、质量相对较高。
另一种获取外部数据费的方式就是爬虫。
比如你可以通过爬虫获取招聘网站某一职位的招聘信息,爬取租房网站上某城市的租房信息,爬取豆瓣评分评分最高的电影列表,获取知乎点赞排行、网易云音乐评论排行列表。基于互联网爬取的数据,你可以对某个行业、某种人群进行分析。
在爬虫之前你需要先了解一些 Python 的基础知识:元素(列表、字典、元组等)、变量、循环、函数(链接的菜鸟教程非常好)……以及如何用成熟的 Python 库(urllib、BeautifulSoup、requests、scrapy)实现网页爬虫。如果是初学,建议从 urllib 和 BeautifulSoup 开始。(PS:后续的数据分析也需要 Python 的知识,以后遇到的问题也可以在这个教程查看)
网上的爬虫教程不要太多,爬虫上手推荐豆瓣的网页爬取,一方面是网页结构比较简单,二是豆瓣对爬虫相对比较友好。
掌握基础的爬虫之后,你还需要一些高级技巧,比如正则表达式、模拟用户登录、使用代理、设置爬取频率、使用cookie信息等等,来应对不同网站的反爬虫限制。
除此之外,常用的的电商网站、问答网站、点评网站、二手交易网站、婚恋网站、招聘网站的数据,都是很好的练手方式。这些网站可以获得很有分析意义的数据,最关键的是,有很多成熟的代码,可以参考。
数据存取:SQL语言
你可能有一个疑惑,为什么没有讲到Excel。在应对万以内的数据的时候,Excel对于一般的分析没有问题,一旦数据量大,就会力不从心,数据库就能够很好地解决这个问题。而且大多数的企业,都会以SQL的形式来存储数据,如果你是一个分析师,也需要懂得SQL的操作,能够查询、提取数据。
SQL作为最经典的数据库工具,为海量数据的存储与管理提供可能,并且使数据的提取的效率大大提升。你需要掌握以下技能:
提取特定情况下的数据:企业数据库里的数据一定是大而繁复的,你需要提取你需要的那一部分。比如你可以根据你的需要提取2018年所有的销售数据、提取今年销量最大的50件商品的数据、提取上海、广东地区用户的消费数据……,SQL可以通过简单的命令帮你完成这些工作。
数据库的增、删、查、改:这些是数据库最基本的操作,但只要用简单的命令就能够实现,所以你只需要记住命令就好。
数据的分组聚合、如何建立多个表之间的联系:这个部分是SQL的进阶操作,多个表之间的关联,在你处理多维度、多个数据集的时候非常有用,这也让你可以去处理更复杂的数据。
数据预处理:Python(pandas)
很多时候我们拿到的数据是不干净的,数据的重复、缺失、异常值等等,这时候就需要进行数据的清洗,把这些影响分析的数据处理好,才能获得更加精确地分析结果。
比如空气质量的数据,其中有很多天的数据由于设备的原因是没有监测到的,有一些数据是记录重复的,还有一些数据是设备故障时监测无效的。比如用户行为数据,有很多无效的操作对分析没有意义,就需要进行删除。
那么我们需要用相应的方法去处理,比如残缺数据,我们是直接去掉这条数据,还是用临近的值去补全,这些都是需要考虑的问题。
对于数据预处理,学会 pandas 的用法,应对一般的数据清洗就完全没问题了。需要掌握的知识点如下:
选择:数据访问(标签、特定值、布尔索引等)
缺失值处理:对缺失数据行进行删除或填充
重复值处理:重复值的判断与删除
空格和异常值处理:清楚不必要的空格和极端、异常数据
相关操作:描述性统计、Apply、直方图等
合并:符合各种逻辑关系的合并操作
分组:数据划分、分别执行函数、数据重组
Reshaping:快速生成数据透视表
概率论及统计学知识
数据整体分布是怎样的?什么是总体和样本?中位数、众数、均值、方差等基本的统计量如何应用?如果有时间维度的话随着时间的变化是怎样的?如何在不同的场景中做假设检验?数据分析方法大多源于统计学的概念,所以统计学的知识也是必不可少的。需要掌握的知识点如下:
基本统计量:均值、中位数、众数、百分位数、极值等
其他描述性统计量:偏度、方差、标准差、显着性等
其他统计知识:总体和样本、参数和统计量、ErrorBar
概率分布与假设检验:各种分布、假设检验流程
其他概率论知识:条件概率、贝叶斯等
有了统计学的基本知识,你就可以用这些统计量做基本的分析了。通过可视化的方式来描述数据的指标,其实可以得出很多结论了,比如排名前100的是哪些,平均水平是怎样的,近几年的变化趋势如何……
你可以使用python的包 Seaborn(python包)在做这些可视化的分析,你会轻松地画出各种可视化图形,并得出具有指导意义的结果。了解假设检验之后,可以对样本指标与假设的总体指标之间是否存在差别作出判断,已验证结果是否在可接受的范围。
python数据分析
如果你有一些了解的话,就知道目前市面上其实有很多 Python 数据分析的书籍,但每一本都很厚,学习阻力非常大。但其实真正最有用的那部分信息,只是这些书里很少的一部分。比如用 Python 实现不同案例的假设检验,其实你就可以对数据进行很好的验证。
比如掌握回归分析的方法,通过线性回归和逻辑回归,其实你就可以对大多数的数据进行回归分析,并得出相对精确地结论。比如DataCastle的训练竞赛“房价预测”和“职位预测”,都可以通过回归分析实现。这部分需要掌握的知识点如下:
回归分析:线性回归、逻辑回归
基本的分类算法:决策树、随机森林……
基本的聚类算法:k-means……
特征工程基础:如何用特征选择优化模型
调参方法:如何调节参数优化模型
Python 数据分析包:scipy、numpy、scikit-learn等
在数据分析的这个阶段,重点了解回归分析的方法,大多数的问题可以得以解决,利用描述性的统计分析和回归分析,你完全可以得到一个不错的分析结论。
当然,随着你实践量的增多,可能会遇到一些复杂的问题,你就可能需要去了解一些更高级的算法:分类、聚类,然后你会知道面对不同类型的问题的时候更适合用哪种算法模型,对于模型的优化,你需要去学习如何通过特征提取、参数调节来提升预测的精度。这就有点数据挖掘和机器学习的味道了,其实一个好的数据分析师,应该算是一个初级的数据挖掘工程师了。
系统实战
这个时候,你就已经具备了数据分析的基本能力了。但是还要根据不同的案例、不同的业务场景进行实战。能够独立完成分析任务,那么你就已经打败市面上大部分的数据分析师了。
如何进行实战呢?
上面提到的公开数据集,可以找一些自己感兴趣的方向的数据,尝试从不同的角度来分析,看看能够得到哪些有价值的结论。
另一个角度是,你可以从生活、工作中去发现一些可用于分析的问题,比如上面说到的电商、招聘、社交等平台等方向都有着很多可以挖掘的问题。
开始的时候,你可能考虑的问题不是很周全,但随着你经验的积累,慢慢就会找到分析的方向,有哪些一般分析的维度,比如top榜单、平均水平、区域分布、年龄分布、相关性分析、未来趋势预测等等。随着经验的增加,你会有一些自己对于数据的感觉,这就是我们通常说的数据思维了。
你也可以看看行业的分析报告,看看优秀的分析师看待问题的角度和分析问题的维度,其实这并不是一件困难的事情。
在掌握了初级的分析方法之后,也可以尝试做一些数据分析的竞赛,比如 DataCastle 为数据分析师专门定制的三个竞赛,提交答案即可获取评分和排名:
员工离职预测训练赛
美国King County房价预测训练赛
北京PM2.5浓度分析训练赛
种一棵树最好的时间是十年前,其次是现在。现在就去,找一个数据集开始吧!!
Ⅶ 常见的国内外的数据库管理系统有哪些
常见的数据库系统目前主流的有微软的sql
server、甲骨文公司的oracle和mysql数据库,这些是网络型数据库,当然还有一些为桌面型的数据库系统如access,visual
foxpro等。
Ⅷ 对企业来说,数据治理的优势有哪些
提升数据质量:建立数据质量进行定义、监测、分析、整改和评估的闭环管理机制,逐步提升全行数据治理;
加强源头控制:从源头控制数据质量,参照数据标准,培训数据录入人员与客户经理熟悉相关的数据质量规范要求。把数据质量管理流程融入到业务管理流程中,通过流程去规范化数据操作;
统筹外部数据:明确外部数据管理工作,规范外部数据的采集、共享与应用流程,建立外部数据采购管理,数据资产的发布和维护等流程;
完善全行统一客户视图,建立统一产品信息管理:根据各类业务的信息归类,针对不同的主数据特点,统一业务概念,促进数据信息的整合,建设或完善相应的客户、产品、机构等主数据管理系统;
加大数据人才培养,智能工具应用:根据业务用数需求,配置并培养专业数据人员,加大数据可视化、商务智能工具应用,积极探索数据应用场景,以数据驱动内部管理和业务发展的持续提升;
数据分析挖掘:利用大数据实现信用风险管理,利用行内外大数据资源及人工智能技术,将打分卡、策略、决策引擎等量化分析工具应用于风险管理 领域,提升风险管理水平;
统一数据口径:在全行范围对基础数据标准和指标数据标准形成统一的认识,制定全行级的数据标准,明确指标及其相关基础数据项的名称、业务含义、加工口径、应用场景、责任部门及权威系统等信息。
Ⅸ 有哪些好用的大数据采集平台
1.数据超市
一款基于云平台的大数据计算、分析系统。拥有丰富高质量的数据资源,通过自身渠道资源获取了百余款拥有版权的大数据资源,所有数据都经过审核,保证数据的高可用性。
2. Rapid Miner
数据科学软件平台,为数据准备、机器学习、深度学习、文本挖掘和预测分析提供一种集成环境。
3. Oracle Data Mining
它是Oracle高级分析数据库的代表。市场领先的公司用它最大限度地发掘数据的潜力,做出准确的预测。
4. IBM SPSS Modeler
适合大规模项目。在这个建模器中,文本分析及其最先进的可视化界面极具价值。它有助于生成数据挖掘算法,基本上不需要编程。
5. KNIME
开源数据分析平台。你可以迅速在其中部署、扩展和熟悉数据。
6. Python
一种免费的开源语言。
关于有哪些好用的大数据采集平台,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
Ⅹ 什么是元数据管理及其作用
元数据(Meta Date),主要记录数据仓库中模型的定义、各层级间的映射关系、监控数据仓库的数据状态及ETL的任务运行状态。一般会通过元数据资料库(Metadata Repository)来统一地存储和管理元数据,其主要目的是使数据仓库的设计、部署、操作和管理能达成协同和一致。
元数据是数据仓库管理系统的重要组成部分,元数据管理是企业级数据仓库中的关键组件,贯穿数据仓库构建的整个过程,直接影响着数据仓库的构建、使用和维护。
构建数据仓库的主要步骤之一是ETL。这时元数据将发挥重要的作用,它定义了源数据系统到数据仓库的映射、数据转换的规则、数据仓库的逻辑结构、数据更新的规则、数据导入历史记录以及装载周期等相关内容。数据抽取和转换的专家以及数据仓库管理员正是通过元数据高效地构建数据仓库。
用户在使用数据仓库时,通过元数据访问数据,明确数据项的含义以及定制报表。
数据仓库的规模及其复杂性离不开正确的元数据管理,包括增加或移除外部数据源,改变数据清洗方法,控制出错的查询以及安排备份等。
元数据可分为技术元数据和业务元数据。技术元数据为开发和管理数据仓库的IT 人员使用,它描述了与数据仓库开发、管理和维护相关的数据,包括数据源信息、数据转换描述、数据仓库模型、数据清洗与更新规则、数据映射和访问权限等。而业务元数据为管理层和业务分析人员服务,从业务角度描述数据,包括商务术语、数据仓库中有什么数据、数据的位置和数据的可用性等,帮助业务人员更好地理解数据仓库中哪些数据是可用的以及如何使用。
由上可见,元数据不仅定义了数据仓库中数据的模式、来源、抽取和转换规则等,而且是整个数据仓库系统运行的基础,元数据把数据仓库系统中各个松散的组件联系起来,组成了一个有机的整体