❶ 数据挖掘工程师要具备哪些技能
数据挖掘工程师需要具备数学及统计学相关的背景、计算机编码能力、对特定应用领域或行业的知识。
1.缺乏理论背景的数据人员,更容易进入一个技能上的危险区域(Danger Zone)—一些数字,按照不一样的数据模型和算法总能鼓捣出一些结果来,只有具备基础的理论知识,才能真正理解模型、复用模型并且创新模型,来解决实际问题。
2.实际的开发能力和大规模的数据处理能力是成为大数据工程师的一些必备要素。因为许多数据的价值取材于挖掘的过程,你不得不亲自动手才能发现金子的价值。即便在某些团队中,大数据工程师的责任主要以商业分析为主。
3.大数据工程师这个角色非常重要的一点是,不能够脱离市场,因为大数据只有和特定领域的应用结在一起才能产生价值。所以,在某个或多个垂直行业的经验能为应聘者积累对行业的认知,对于之后从事大数据工程师有很大帮助。
关于大数据挖掘工程师的课程推荐CDA数据分析师的相关课程,课程主要培养学员硬性的数据挖掘理论与Python数据挖掘算法技能的同时,还兼顾培养学员软性数据治理思维、商业策略优化思维、挖掘经营思维、算法思维、预测分析思维,全方位提升学员的数据洞察力。课程以项目调动学员数据挖掘实用能力的场景式教学为主,在讲师设计的业务场景下由讲师不断提出业务问题,再由学员循序渐进思考并操作解决问题的过程中,帮助学员掌握真正过硬的解决业务问题的数据挖掘能力。点击预约免费试听课。
❷ 数据挖掘工程师怎么考
数据挖掘领域是一个独特的行业,通常的招聘面试方法可能不大适用于本行业的特点。在招聘一个合格的数据挖掘工程师时,公司一般关注以下三个方面:
他聪明吗?聪明意味着能透过复杂的信息建构问题并以正确的方式加以解决。聪明人还能从失败中获取经验。
他能否专注于项目?专注意味着在各种困难的环境内,仍能独立或合作完成项目。
他是否能与团队一起工作。团队合作需要很好的沟通能力,工作中涉及到的概念、问题、模型、结论等都需要成员之间正确的沟通方能加以明确。
为了解候选人是否具有数据挖掘工程师的潜质,需要一小时的面试,主要通过以下五个环节:
1、简介
如同交谈之初的寒暄一样,简介是使候选人放松下来。可以先介绍一下公司本身的情况,再回答对方的一些疑问。如果问题很复杂,可以将回答放到面试的最后阶段再处理。
2、关于数据挖掘项目
这是最为重要且耗时的面试阶段,询问候选人最近接手的数据挖掘项目的情况和处理方式。要提问的方面包括:
他一开始是如何描述这个项目的
项目持续了多长时间
这个项目的关键问题是什么
问题是如何得到解决的
在数据挖掘项目中最为困难的阶段是什么
最有趣的阶段又是什么
在他眼里,客户是怎么样的
团队的其他成员又是如何表现的
从中获得了什么样的经验
在这个面试阶段,不仅要提问关于“what”的问题,还要很多关于“why”的问题。因为优秀的数据挖掘工程师要能面对客户,清晰的论证并支持其提出的观点。
3、关于数据挖掘的流程
考察候选人对于工作流程的认识是必要的,如果他谈到了跨行业数据挖掘流程规范(CRISP-DM)意味着好兆头。有很多时候,候选人对这些规范不以为然。虽然说从不同的角度来看待问题是一种创新,但是创新也需要建立在坚实在流程标准之上。因为它可以保证我们不会出现大的纰漏。
必要的时候,可以用白板让候选人画出流程图。并让他评价这些工作中最为重要或需要反思的地方。因为建模工作不可能一次完成,反复的提炼问题、建立模型的情况是经常遇到的。
另外可以在某个挖掘流程进行深入考查,例如询问对方如何避免过度拟合,如何从大量的候选变量中进行筛选,如何评价或比较模型的效果。
4、解决问题
软件公司的面试一般会包括“编码测试”,考查数据挖掘工程师也应该如此。一种可以参考的作法是提供一份存在缺陷的分析报告。让候选人对报告进行研究,表达报告中结论的意义,提出其中所存在的问题或不足,提出改进或补救的方法。
5、收尾
在面试的最后阶段,需要回答候选人的其它提问,并使之相信本公司在本行业中的优势地位,以及在职业生涯中的作用。在完成面试后,需要立即将面试记录进行整理存档。
❸ 数据挖掘工程师必备技能是什么
1、编程/统计语言
数据挖掘在很大程度上依赖于编程,根据KD Nuggets的研究,R和Python是数据科学中最受欢迎的编程语言。
2、大数据处理框架
Hadoop,Storm,Samza,Spark,Flink,处理框架对系统中的数据进行计算,可以将其分为3类:仅批处理,仅流和混合。
3、操作系统:Linux
Linux是一种流行的操作系统,对于操作大型数据集而言,Linux更加稳定和高效。
4、数据库知识:关系数据库和非关系数据库
要管理和处理大型数据集,必须具有关系数据库的知识,例如SQL或Oracle,或非关系数据库,其主要类型为:列如Cassandra,HBase;文件:MongoDB,CouchDB;关键值:Redis,Dynamo。
5、基本统计知识
统计的基本知识对于数据挖掘者至关重要,它可以帮助您识别问题,获得更准确的结论,区分因果关系和相关性以及量化发现结果的确定性。
❹ 数据挖掘工程师需要具备哪些技能
一般来说需要具备以下技能:1、编程/统计语言2、操作系统3、大数据处理框架4、数据库知识5、基本统计知识6、数据结构与算法7、机器学习/深度学习算法8、自然语言处理。
1、扎实的基础工程能力倾向于计算机底层系统研究的Java、C++语言是企业招聘过程中非常看重的,当然这并非唯一标准。技术团队leader,首先就会测试候选人的基础工程能力,也就是代码能力,这意味着你的工作能力至少满足基本需求。
2、算法和数据挖掘理论由于行业起步比较晚,很多时候候选人并没有算法和数据挖掘的实践经验。因此,对算法和数据挖掘理论知识的掌握和应用就成为了招聘当中的重要考察因素。
3、优秀的基础职业素养学习能力、自我驱动力、逻辑分析能力等基础职业素养,也是在招聘当中重要的参考因素。
关于数据挖掘的相关学习,推荐CDA数据师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。
❺ 大数据挖掘工程师应具备哪些技能
首先,我们可以从数据获取、数据存取、数据清洗、数据挖掘分析、数据可视化、数据报告等几个方面入手。
具体涵盖以下技能:
1、Linux操作系统、Linux常用命令、Linux常用软件安装、Linux网络、 防火墙、Shell编程等。
2、Java 开发,掌握多线程、掌握并发包下的队列、掌握JVM技术、掌握反射和动态代理、了解JMS。
3、Zookeeper分布式协调服务、Zookeeper集群的安装部署、Zookeeper数据结构、命令。
4、Hadoop 、Hive、HBase、Scala、Spark 、Sqoop、Flume、Oozie、Hue等大数据生态系统知识和技能。
6、Excel、Mysql、Python等数据采集,数据存取分析挖掘工具和技术。
7、Tableau、FineBI、Qlikview等可视化应用能力。
关于大数据挖掘工程师应具备哪些技能,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
❻ 数据挖掘工程师怎么考
数据挖掘工程师可以通过学习考取两个证书,证书目前主流有两个,一个是CDA,另一个是CPDA。
1.CDA全名是数据分析师,主要是数据分析方法、技术和软件操作为主。它包括:1、统计概率基础;2、数据分析模型方法;3、软件、工具的运用。如果这些技术不会,也不可能会操作数据分析。所以,CDA主要是针对数据分析师必不可少的技术性培训,是数据的获取、储存、整理、清洗、分析,检验到结果报告一个整体的过程,以及数据分析部分软件的操作。
2.CPDA全名叫项目数据分析师,国内出现最早的数据分析培训,原先是信息产业部在组织,目前由中商联数据分析专业委员会和工信部教育与考试中心主管,内容主要针对的是基于企业在投资、经营、管理领域的数据分析,类似于MBA课程。课程包括《数据分析基础》、《战略管理》、《量化投资》、《量化经营》等,覆盖企业运营的每个环节,以数据分析的方法来进行的管理、经营、投资的分析,应该说企业的管理层适合学习CPDA来进行管理层面的分析和指导。
关于数据挖掘工程师的课程推荐CDA数据分析师的相关课程,课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。要求学生具备从数据治理根源出发的思维,通过数字化工作方法来探查业务问题,通过近因分析、宏观根因分析等手段,再选择业务流程优化工具还是算法工具,而非“遇到问题调算法包”点击预约免费试听课。
❼ 如何在一年内成为数据挖掘工程师
数据挖掘工程师和数据分析师一样道理,你可以参考以下:
什么是数据分析师?
一个数据分析大牛是从严格意义上来讲,要懂数学和统计学知识、实体法还有一点黑客技术。目前很多想从事数据分析的,可能只会Excel,会做透视表,会VBA;进阶一点会写SQL,还懂点业务;再专业一些,有统计学基础,懂回归、时间序列、假设检验等等。这些对于专业的数据分析师,还都差了点火候。如果你有心想发展成为一个数据分析师,或者说某业务的资深数据分析专家,从技术层面来讲,你需要了解成为一个数据分析师的路径,6个步骤。
第一步:统计、数据、机器学习
关于数学知识,大学课堂会学过一部分,如果是数学科学类的专业会学得更精深。如果这一部分你需要弥补一下充充电,可汗学院、麻省理工都有相关的开放课程。
关于统计学知识,推荐去udacity,openintro上系统的学习,统计还是需要一定思维的锻炼的。机器学习,可以网络一下斯坦福的课程,有公开课。
第二步:编代码
如果希望拥有专业水准的话,从编程基础到端到端的开发,一些技术的语言,比如R、Python、和一些商业软件的SAS、SPSS等,以及深入的交互式学习,这些你至少精通几门,其他懂一些最好。
第三步:懂数据库
数据分析大多应用实际。企业数据常常被保存在MySQL、Oracle、Postgres、MonogoDB、Cassandra等数据库中,所以这些数据库你要了解甚至懂。
第四步:数据管理、数据可视化、数据报告
数据管理包括数据的清洗格加工ETL,目的是让分析前的数据更加准确和清晰,比如DataWrangler
数据可视化数据数据分析的前端展示,目的是让数据呈现更清楚明了,更形象,比如tableau,spotfire。数据报告是通过不同工具将数据展示出来,可以和数据可视化归类一起,但实际应用中大多数都是通过PPT的承载方式来呈现。
目前市面上很多公司都使用商业智能的工具,比如FineBI。BI工具是数据连接,数据处理和可视化为一体的工具,比起上方的纯工具,能更好的适应业务。
第五步:大数据
大数据是未来的必然趋势,而大数据技术的类型也是多种多样,hadoop,maprece,spark等等,多学会一种,层次也就不一样。
第六步:积攒经验,学习同行
以上都是理论和工具,但是实践才是出真知,不管是刚接触数据分析的职场人,还是专业学习数据挖掘分析的你,都希望在学习以上内容的同时,多参加一些比赛,学习同领域的专业大神,训练自己在这方面的感觉。
当然,在实际应用过程中,大多数人不一数据分析为主业,数据分析只是分析业务的一个工具,那第四步的内容已经能够满足日常对业务的分析了,当然Excel和PPT的熟练掌握也是必须。
❽ 数据挖掘工程师需要掌握的技能有哪些
1、需要理解主流机器学习算法的原理和应用。
2、需要熟悉至少一门编程语言如(Python、C、C++、Java、Delphi等)。
3、需要理解数据库原理,能够熟练操作至少一种数据库(Mysql、SQL、DB2、Oracle等),能够明白MapRece的原理操作以及熟练使用Hadoop系列工具更好。
4、经典图书推荐:《数据挖掘概念与技术》、《机器学习实战》、《人工智能及其应用》、《数据库系统概论》、《算法导论》、《Web数据挖掘》、《 Python标准库》、《thinking in Java》、《Thinking in C++》、《数据结构》等。
❾ 怎样成为优秀的大数据工程师
1.从才能上来分析的,首要大数据工程师是需求有计算机编码才能的,因为面对海量的非结构化数据,你要从中挖掘出有价值的东西,需求规划算法与编写程序去实现,而程序员最牛的才能就是编写简洁高效的代码,去实现人们对未来天马行空的愿望,编码才能越强的程序员越有或许成为优异的大数据工程师。
2.其次,大数据工程师需求统计学与使用数学相关的才能布景,数据挖掘与分析是需求规划数据模型和算法的,应该说程序员是有这个基础的,一般优异的大数据工程师并不是科班出身,通常是数学专业,因而提高算法规划才能是程序员转型大数据工程师的关键因素。
3.大数据工程师需求具备行业的业务知识,大数据技能的终究意图是服务于社会和企业,并对市场和企业的发展起到严重推进效果,才是大数据的价值所在,因而大数据工程师不能脱离市场。
关于怎样成为优秀的大数据工程师,青藤小编就和您分享到这里了。如果你对大数据工程有浓厚的兴趣,希望这篇文章能够对你有所帮助。如果您还想了解更多数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
❿ 如何成为数据挖掘工程师
数据分析师是为了适应大数据时代要求,加强正规化、专业化、职业化的数据分析师人才队伍建设,进一步提升我国数据分析员师的职业素质和能力水平.
数据工程师所配的职称
数据挖掘工程师、大数据专家、数据研究员、用户分析专家等
数据挖掘工程师所做的事
基于数据-分析过去,预测未来-优化选择。
分析过去,预测未来在工业领域,可以是设备的健康状态评估......
分析过去,预测未来在金融领域,可以是股票发展趋势,高频交易导向......
分析过去,预测未来在军事领域,可以是情报获取,破解......
分析过去,预测未来在医学领域,可以是预测疾病,制定出新的治疗方案......
分析过去,预测未来在执法领域,可以是个人行为预测,判断是否为犯罪分子......
分析过去,预测未来在教育领域,可以是更准确地把握学生存在的问题......
等等,总之数据即为信息,将信息中的规律或特征提取出来,量化信息的各项指标,以针对目前状况作出最佳的决策。
数据挖掘工程师所需的能力
编程能力:熟悉Python,C/C++,Java,Perl,Golang,Hadoop,Hive,HBase,Scala,Spark或其它语言,会多种操作系统,对Unix,Linux和Solaris系统有深入了解,主要是为实现自动化的替代人为工作(包括逻辑推理及运算),而在众多的语言及操作系统中选择出利润最高,效能最大的是十分重要的。
应用领域核心需求分析能力:核心需求是模型/算法与实际工程应用的结合点,结合的好才能产生相应的价值,在某个或多个垂直行业有过工作经历将大大提升此类分析能力。
数学推理能力:能够以通俗易懂的方式解释数学模型及算法的能力,如此才有可能真正的理解模型/算法、复现模型/算法、以至于创新模型/算法。
数据挖掘工程师所需的技能
数据获取:日志收集 Scribe、Flume和爬虫等。
数据处理:流式计算的storm, spark streaming、Hadoop、消息队列相关的如Kafka等。
数据分析:HIVE、SPARKSQL、基本算法、数据结构等。
数据存储:分布式数据存储-HDFS等。
数据挖掘:机器学习相关算法、信号(图像)处理相关算法、自然语言处理、知识表述、聚类、时序、推荐系统、回归分析、文本挖掘、贝叶斯分类、神经网络等。
经国家相关部委统一颁布实施,旨在通过掌握大量行业数据以及科学的计算工具,将经济学原理用数学模型表示,科学合理的分析投资和运营项目未来的收益及风险情况,为做出科学合理的决策提供依据。 报考条件没有限制。