导航:首页 > 数据处理 > 如何用数据分析回归进行分析

如何用数据分析回归进行分析

发布时间:2022-12-14 00:26:31

㈠ 如何用excel做线性回归分析

1、单击开始---->所有程序---->Microsoft Office,选择Microsoft Excel 2010选项。

㈡ 回归分析的基本步骤是什么

回归分析:

1、确定变量:明确预测的具体目标,也就确定了因变量。如预测具体目标是下一年度的销售量,那么销售量Y就是因变量。通过市场调查和查阅资料,寻找与预测目标的相关影响因素,即自变量,并从中选出主要的影响因素。

2、建立预测模型:依据自变量和因变量的历史统计资料进行计算,在此基础上建立回归分析方程,即回归分析预测模型。

3、进行相关分析:回归分析是对具有因果关系的影响因素(自变量)和预测对象(因变量)所进行的数理统计分析处理。只有当自变量与因变量确实存在某种关系时,建立的回归方程才有意义。

因此,作为自变量的因素与作为因变量的预测对象是否有关,相关程度如何,以及判断这种相关程度的把握性多大,就成为进行回归分析必须要解决的问题。进行相关分析,一般要求出相关关系,以相关系数的大小来判断自变量和因变量的相关的程度。

4、计算预测误差:回归预测模型是否可用于实际预测,取决于对回归预测模型的检验和对预测误差的计算。回归方程只有通过各种检验,且预测误差较小,才能将回归方程作为预测模型进行预测。

5、确定预测值:利用回归预测模型计算预测值,并对预测值进行综合分析,确定最后的预测值。

Logistic Regression逻辑回归

逻辑回归是用来计算“事件=Success”和“事件=Failure”的概率。当因变量的类型属于二元(1 / 0,真/假,是/否)变量时,应该使用逻辑回归。这里,Y的值为0或1,它可以用下方程表示。

odds= p/ (1-p) = probability of event occurrence / probability of not event occurrence

ln(odds) = ln(p/(1-p))

logit(p) = ln(p/(1-p)) =b0+b1X1+b2X2+b3X3....+bkXk

在这里使用的是的二项分布(因变量),需要选择一个对于这个分布最佳的连结函数。它就是Logit函数。在上述方程中,通过观测样本的极大似然估计值来选择参数,而不是最小化平方和误差(如在普通回归使用的)。

以上内容参考:网络-回归分析

数据分析师必须掌握的7种回归分析方法

1、线性回归


线性回归是数据分析法中最为人熟知的建模技术之一。它一般是人们在学习预测模型时首选的技术之一。在这种数据分析法中,由于变量是连续的,因此自变量可以是连续的也可以是离散的,回归线的性质是线性的。


线性回归使用最佳的拟合直线(也就是回归线)在因变量(Y)和一个或多个自变量(X)之间建立一种关系。


2、逻辑回归


逻辑回归是用来计算“事件=Success”和“事件=Failure”的概率。当因变量的类型属于二元(1 /0,真/假,是/否)变量时,我们就应该使用逻辑回归.


逻辑回归不要求自变量和因变量是线性关系。它可以处理各种类型的关系,因为它对预测的相对风险指数OR使用了一个非线性的log转换。


为了避免过拟合和欠拟合,我们应该包括所有重要的变量。有一个很好的方法来确保这种情况,就是使用逐步筛选方法来估计逻辑回归。它需要大的样本量,因为在样本数量较少的情况下,极大似然估计的效果比普通的最小二乘法差。


3、多项式回归


对于一个回归方程,如果自变量的指数大于1,那么它就是多项式回归方程。虽然会有一个诱导可以拟合一个高次多项式并得到较低的错误,但这可能会导致过拟合。你需要经常画出关系图来查看拟合情况,并且专注于保证拟合合理,既没有过拟合又没有欠拟合。下面是一个图例,可以帮助理解:


明显地向两端寻找曲线点,看看这些形状和趋势是否有意义。更高次的多项式最后可能产生怪异的推断结果。


4、逐步回归


在处理多个自变量时,我们可以使用这种形式的回归。在这种技术中,自变量的选择是在一个自动的过程中完成的,其中包括非人为操作。


这一壮举是通过观察统计的值,如R-square,t-stats和AIC指标,来识别重要的变量。逐步回归通过同时添加/删除基于指定标准的协变量来拟合模型。


5、岭回归


岭回归分析是一种用于存在多重共线性(自变量高度相关)数据的技术。在多重共线性情况下,尽管最小二乘法(OLS)对每个变量很公平,但它们的差异很大,使得观测值偏移并远离真实值。岭回归通过给回归估计上增加一个偏差度,来降低标准误差。


除常数项以外,这种回归的假设与最小二乘回归类似;它收缩了相关系数的值,但没有达到零,这表明它没有特征选择功能,这是一个正则化方法,并且使用的是L2正则化。


6、套索回归


它类似于岭回归。除常数项以外,这种回归的假设与最小二乘回归类似;它收缩系数接近零(等于零),确实有助于特征选择;这是一个正则化方法,使用的是L1正则化;如果预测的一组变量是高度相关的,Lasso 会选出其中一个变量并且将其它的收缩为零。


7、回归


ElasticNet是Lasso和Ridge回归技术的混合体。它使用L1来训练并且L2优先作为正则化矩阵。当有多个相关的特征时,ElasticNet是很有用的。Lasso会随机挑选他们其中的一个,而ElasticNet则会选择两个。Lasso和Ridge之间的实际的优点是,它允许ElasticNet继承循环状态下Ridge的一些稳定性。


通常在高度相关变量的情况下,它会产生群体效应;选择变量的数目没有限制;并且可以承受双重收缩。


关于数据分析师必须掌握的7种回归分析方法,青藤小编就和您分享到这里了,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的职业前景及就业内容,可以点击本站的其他文章进行学习。

㈣ 如何对数据进行回归分析

CRM无疑是企业有效的销售工具,为企业做出准确的客户数据分析,提升数据分析的水平,帮助企业提升销售业绩。

1、统计报表直观可见

CRM系统可以按团队或者按人员查看销售数据,包含了员工线索数据分析、员工客户分析、员工商机分析、销售漏斗分析、商机趋势分析等。

销售数据直观可见,管理简便,管理者即可清楚的看到员工的正常任务是如期完成还是超期完成,对于员工的工作绩效考核有重要分析意义。

2、客户需求整体把握

CRM系统通过把为外部数据,如社交媒体数据,购买历史,产品趋势和最新发布等,与内部数据结合起来以提升洞察力。

在某些情况下,数据能够揭示顾客的需求,通过数据分析能为企业更好地了解客户行为,分析客户喜好,并有针对性地提供更优秀的产品及服务。

3、销售预测更加精准

CRM系统可将销售机会以漏斗形式展示,直观的看到不同阶段所存在的机会数量与预计签约金额,通过多层级细致分析,实现大数据精准预测未来时间段企业产生的销售业绩。

分阶段的销售过程推进,可以预测出成交的时间和节点,以及所记录的精准需求,由此可以判断出客户成交的价值高低以及可能性。

此外,CRM系统数据分析功能还可以从多个维度、多个方面对企业数据进行分析,让管理人员可以从数据分析的结果得出企业的经营状况以及主要客户的特征,进而对企业下一步的规划作出调整。

简信crm

面对纷繁复杂的大量数据,CRM系统嵌入BI功能,能够对海量的数据进行分析处理,甄选出有用的数据,帮助销售人员明了客户需求,为销售带来了福音。

㈤ 如何用EXCEL做数据线性拟合和回归分析

1、厘清各个数据之间的逻辑关系,搞清楚哪个是自变量,哪个又是因变量。这里我们要对人均gdp和城市化水平进行分析,建立符合两者之间的模型,假定人均gdp为自变量,城市化水平是因变量。

2、由于我们不知道两者之间的具体关系如何,所以我们利用数据生成一个散点图判断其可能符合的模型。为生成的散点图,一般横坐标为自变量,纵坐标为因变量,所以我们需要将x轴,y轴的坐标对调一下,这里采用最简单的方法,将因变量移动到自变量的右边一列即可。

3、由步骤2的散点图,我们可以判断自变量和因变量之间可能呈线性关系,我们可以添加线性趋势线进一步加以判断。如附图1所示。也可以添加指数,移动平均等趋势线进行判断。很明显数据可能符合线性关系,所以下面我们对数据进行回归分析。

4、选择菜单栏的“数据分析”-->“回归”。

5、步骤4进行的回归分析输出结果如附图所示。回归模型是否有效,可以参见p指,如果p<0.001则极端显着,如果0.001<p<0.01非常显着,0.01<p<0.05则一般显着,p>0.05则不显着。本例的p值均小于0.001,所以属于极端显着,故回归模型是有效的。根据回归模型的结果可知
y = 5E-06x + 0.5876R² = 0.9439

㈥ 回归分析结果怎么分析

从一组数据出发,确定某些变量之间的定量关系式,即建立数学模型并估计其中的未知参数。估计参数的常用方法是最小二乘法。对这些关系式的可信程度进行检验。

在许多自变量共同影响着一个因变量的关系中,判断哪个(或哪些)自变量的影响是显着的,哪些自变量的影响是不显着的,将影响显着的自变量加入模型中,而剔除影响不显着的变量,通常用逐步回归、向前回归和向后回归等方法。

利用所求的关系式对某一生产过程进行预测或控制。回归分析的应用是非常广泛的,统计软件包使各种回归方法计算十分方便。



(6)如何用数据分析回归进行分析扩展阅读

回归分析法进行预测首先要对各个自变量做出预测。若各个自变量可以由人工控制或易于预测,而且回归方程也较为符合实际,则应用回归预测是有效的,否则就很难应用。

为使回归方程较能符合实际,首先应尽可能定性判断自变量的可能种类和个数,并在观察事物发展规律的基础上定性判断回归方程的可能类型;其次,力求掌握较充分的高质量统计数据,再运用统计方法,利用数学工具和相关软件从定量方面计算或改进定性判断。

阅读全文

与如何用数据分析回归进行分析相关的资料

热点内容
研发转技术文档怎么样 浏览:702
商业银行的市场准入有哪些内容 浏览:355
政府引导市场运作是什么意思 浏览:39
为什么qq经常正在更新数据 浏览:180
内存是如何存数据的 浏览:55
信道状态指示包括以下哪些信息 浏览:305
什么是现代市场体系 浏览:891
加盟代理商如何注册 浏览:249
g工程和数字媒体技术哪个前景好 浏览:372
信息化系统如何运维 浏览:415
济南特色早餐技术培训哪里好 浏览:292
什么是货币交易所的充值与提币 浏览:951
信息提取题考查什么 浏览:388
老外技术到底怎么样 浏览:745
微商老代理回归朋友圈怎么发 浏览:342
奶牛猫在市场上是什么价格 浏览:938
心电图中的数据表示什么 浏览:76
程序员那么可爱在哪里可以看全部 浏览:5
信息组织都有哪些 浏览:375
医保报销数据怎么写 浏览:370