‘壹’ 大数据开发工程师要掌握哪些技术
1. Java编程技术
Java编程技术是大数据学习的基础,Java是一种强类型语言,拥有极高的跨平台能力,可以编写桌面应用程序、Web应用程序、分布式系统和嵌入式系统应用程序等,是大数据工程师最喜欢的编程工具,因此,想学好大数据,掌握Java基础是必不可少的。
2.Linux命令
对于大数据开发通常是在Linux环境下进行的,相比Linux操作系统,Windows操作系统是封闭的操作系统,开源的大数据软件很受限制,因此,想从事大数据开发相关工作,还需掌握Linux基础操作命令。
3. Hadoop
Hadoop是大数据开发的重要框架,其核心是HDFS和MapRece,HDFS为海量的数据提供了存储,MapRece为海量的数据提供了计算,因此,需要重点掌握,除此之外,还需要掌握Hadoop集群、Hadoop集群管理、YARN以及Hadoop高级管理等相关技术与操作!
4. Hive
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供简单的sql查询功能,可以将sql语句转换为MapRece任务进行运行,十分适合数据仓库的统计分析。对于Hive需掌握其安装、应用及高级操作等。
5. Avro与Protobuf
Avro与Protobuf均是数据序列化系统,可以提供丰富的数据结构类型,十分适合做数据存储,还可进行不同语言之间相互通信的数据交换格式,学习大数据,需掌握其具体用法。
6.ZooKeeper
ZooKeeper是Hadoop和Hbase的重要组件,是一个为分布式应用提供一致性服务的软件,提供的功能包括:配置维护、域名服务、分布式同步、组件服务等,在大数据开发中要掌握ZooKeeper的常用命令及功能的实现方法。
关于大数据开发工程师要掌握哪些技术,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
‘贰’ 大数据开发工程师需要具备哪些技能
首要,需求学习Java根底。很多人猎奇学习大数据需不需求学Java,正确答案是需求。一方面Java是目前使用最为广泛的编程言语,它具有的很多特性,特别合适作为大数据应用的开发言语;另一方面Hadoop以及其他大数据处理技能很多都是用Java开发,例如Apache的根据Java的HBase和Accumulo以及 ElasticSearchas,因而学习Hadoop的一个首要条件,就是把握Java言语编程。
其次,需求学习是Linux系统、Hadoop生态系统。大数据的整个结构是建立在Linux系统上面的,所以要熟悉Linux开发环境。而Hadoop是一个开源的分布式核算+分布式存储平台,是一个大数据的根底架构,它能建立大型数据仓库,PB级别数据的存储、处理、分析、核算等业务。在这一阶段,你必需求把握Hadoop的中心组件,包含分布式文件系统HDFS、资源调度办理系统YARN以及分布式核算结构MapRece。
再次,需求学习是分布式核算结构Spark&Storm生态系统。随着学习的深化,在具有一定的根底之后,你就需求学习Spark大数据处理技能、Mlib机器学习、GraphX图核算以及Strom技能架构根底和原理等知识。Spark无论是在功能仍是在方案的统一性方面,都有着极大的优越性,可以对大数据进行综合处理:实时数据流处理、批处理和交互式查询。
关于大数据开发工程师需要具备哪些技能,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
‘叁’ 从事大数据开发需要具备哪些技能
大数据开发一般要具备编程能力,就我从业3年多经验来看,有编程能力会获得更好的发展。
大数据开发一般有数仓开发、数据分析、数据开发三大类,每类要求的技能是不一样的。但是都有很多共通的技能。
通用的技能:除了具备基础的Sql能力以外,包括会用传统的Mysql、Oracle这种传统数据库,而且要会用Hive、Hbase这些基于分布式的数据库;当然Java编程能力是不可少的,其他方面的诸如Maprece和Spark也会就更好了。会用集群,集群除了问题有一定解决集群问题的能力。
数仓开发:要会数仓建模,维表、事实表、主题表、星型模型、雪花模型等等,要对业务非常熟悉,有全局观,才能建好数据仓库。
数据开发:数据开发有离线开发和实时开发,这种更偏向后端开发,类似java有需求就开发,加上平时对程序维护。
数据分析:这个要求sql功底强,如果能用python对数据分析那会更好了。要会用sqoop和kettle等这些常用的ETL工具,会用报表系统。
当然,如果你想学习,可以深入学习更多的东西。毕竟在平时开发的过程中,尤其是小公司分工不明确的情况下,这些技能或多或少都需要我们掌握的。就是一个人可以当几个人用,类似全栈工程师。
‘肆’ 成为大数据开发工程师要学习什么
1、需要学习Java基础
很多人好奇学习大数据需不需要学Java,正确答案是需要。一方面Java是目前使用最为广泛的编程语言,它具有的众多特性,特别适合作为大数据应用的开发语言;另一方面Hadoop以及其他大数据处理技术很多都是用Java开发,例如Apache的基于Java的HBase和Accumulo以及
ElasticSearchas,因此学习Hadoop的一个首要条件,就是掌握Java语言编程。
2、需要学习是Linux系统、Hadoop生态体系
大数据的整个框架是搭建在Linux系统上面的,所以要熟悉Linux开发环境。而Hadoop是一个开源的分布式计算+分布式存储平台,是一个大数据的基础架构,它能搭建大型数据仓库,PB级别数据的存储、处理、分析、统计等业务。在这一阶段,你必须要掌握Hadoop的核心组件,包括分布式文件系统HDFS、资源调度管理系统YARN以及分布式计算框架MapRece。
3、需要学习是分布式计算框架Spark&Storm生态体系
随着学习的深入,在具备一定的基础之后,你就需要学习Spark大数据处理技术、Mlib机器学习、GraphX图计算以及Strom技术架构基础和原理等知识。Spark无论是在性能还是在方案的统一性方面,都有着极大的优越性,可以对大数据进行综合处理:实时数据流处理、批处理和交互式查询。