‘壹’ 数据仓库的含义是什么数据仓库和数据库的区别是什么
7.理解数据仓库的含义,数据仓库和数据库的区别。
答:含义数据仓库是一个面向主题的,集成的,不可更新的,随时间不断变化的数据集合,他可以支持企业或组织的决策分析处理。
区别:1.数据库只存放在当前值,数据仓库存放历史值;
2.数据库内数据是动态变化的,只要有业务发生,数据就会被更新,而数据仓库则是静态的历史数据,只能定期添加、刷新;
3.数据库中的数据结构比较复杂,有各种结构以适合业务处理系统的需要,而数据仓库中的数据结构则相对简单;
4.数据库中数据访问频率较高,但访问量较少,而数据仓库的访问频率低但访问量却很高;
5.数据库中数据的目标是面向业务处理人员的,为业务处理人员提供信息处理的支持,而数据仓库则是面向高层管理人员的,为其提供决策支持;
6.数据库在访问数据时要求响应速度快,其响应时间一般在几秒内,而数据仓库的响应时间则可长达数几小时
‘贰’ 什么是数据仓库为什么要建立数据仓库数据仓库有什么特点
数据仓库概念:
英文名称为Data Warehouse,可简写为DW或DWH。数据仓库的目的是构建面向分析的集成化数据环境,为企业提供决策支持(Decision Support)。它出于分析性报告和决策支持目的而创建。
这就要从数仓能解决的问题或者痛点来说,大型公司的业务相对复杂,随着公司业务的扩大,跨BU,跨BG的业务往来越来越多,而数据一般分散在各个部门,这样需要统一的平台来存储这样的跨系统的数据。此外,近年来分库分表等应用越来越多,仅通过传统关系型数据库做数据分析和挖掘已经不能满足要求。当然随着手机APP的大量使用,埋点等数据一般都以log日志方式存在,需要一个新的介质后者方案来解析这些数据,为了解决这个问题,数仓技术应运而生。
反过来讲,如果公司系统较为单纯,数据量比较小,传统关系型数据库以及完全可以满足数据检索和分析的需求,就不需要花成本来构建数仓。
其实构建数仓的原因还有很多,但无非是用一个更可靠的平台把分散的低价值的数据通过清洗,整合,分析挖掘使得数据的价值最大化。
‘叁’ 数据仓库是什么意思
数据仓库之父Bill Inmon在1991年出版的“Building the Data Warehouse”一书中所提出的定义被广泛接受——数据仓库(Data Warehouse)是一个面向主题的(Subject Oriented)、集成的(Integrated)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,用于支持管理决策(Decision Making Support)。
◆面向主题:操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织的。
◆集成的:数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。
◆相对稳定的:数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。
◆反映历史变化:数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。
‘肆’ 数据仓库是什么意思啊通俗的讲
数据仓库:数据仓库之父比尔·恩门(Bill Inmon)在1991年出版的“Building the Data Warehouse”(《建立数据仓库》)一书中所提出数据仓库是一个面向主题的(Subject Oriented)、集成的(Integrate)、相对稳定的(Non-Volatile)、反映历史变化(Time Variant)的数据集合,从字面意义上看数据仓库就是数据的仓库,它的实质就是一个可以容纳更多数据的数据集。其目的是通过将操作型数据集成带统一的环境中,为企业所有级别的决策制定过程,提供所有类型数据支撑的战略集合,主要是用于数据挖掘和数据分析,以建立数据沙盘为基础,为消灭消息孤岛和支持决策。数据仓库关注的是解决数据一致性,可信性,集合性……通过统一数据口径,整理清洗数据将杂乱无序的业务数据转化为对于业务运营、业务分析来说简单易用的数据形式。
就零售行业来讲,其每天进行的交易行为是以万或者千万来讲的,每一次数据录入必须要在极短的时间内完成。所以数据库只能储存短时间的一段数据,数据仓库则是根据这些时效数据,对数据进行清洗处理,然后进行分析,挖掘利用数据仓库中的数据价值,为企业进行决策提供数据支撑。
‘伍’ 数据仓库是什么
根据数据仓库概念的含义,数据仓库拥有以下四个特点:
1、面向主题。操作型数据库的数据组织面向事务处理任务,各个业务系统之间各自分离,而数据仓库中的数据是按照一定的主题域进行组织。主题是一个抽象的概念,是指用户使用数据仓库进行决策时所关心的重点方面,一个主题通常与多个操作型信息系统相关。
2、集成的。面向事务处理的操作型数据库通常与某些特定的应用相关,数据库之间相互独立,并且往往是异构的。而数据仓库中的数据是在对原有分散的数据库数据抽取、清理的基础上经过系统加工、汇总和整理得到的,必须消除源数据中的不一致性,以保证数据仓库内的信息是关于整个企业的一致的全局信息。
3、相对稳定的。操作型数据库中的数据通常实时更新,数据根据需要及时发生变化。数据仓库的数据主要供企业决策分析之用,所涉及的数据操作主要是数据查询,一旦某个数据进入数据仓库以后,一般情况下将被长期保留,也就是数据仓库中一般有大量的查询操作,但修改和删除操作很少,通常只需要定期的加载、刷新。
4、反映历史变化。操作型数据库主要关心当前某一个时间段内的数据,而数据仓库中的数据通常包含历史信息,系统记录了企业从过去某一时点(如开始应用数据仓库的时点)到目前的各个阶段的信息,通过这些信息,可以对企业的发展历程和未来趋势做出定量分析和预测。
企业数据仓库的建设,是以现有企业业务系统和大量业务数据的积累为基础。数据仓库不是静态的概念,只有把信息及时交给需要这些信息的使用者,供他们做出改善其业务经营的决策,信息才能发挥作用,信息才有意义。而把信息加以整理归纳和重组,并及时提供给相应的管理决策人员,是数据仓库的根本任务。因此,从产业界的角度看,数据仓库建设是一个工程,是一个过程。