⑴ 数据库语言有哪些
数据定义语言(DDL),例如:CREATE、DROP、ALTER等语句。
数据操作语言(DML),例如:INSERT(插入)、UPDATE(修改)、DELETE(删除)语句。
数据查询语言(DQL),例如:SELECT语句。(一般不会单独归于一类,因为只有一个语句)。
数据控制语言(DCL),例如:GRANT、REVOKE等语句。
事务控制语言(TCL),例如:COMMIT、ROLLBACK等语句。
SQL语言包括四类种主要程序设计语言类别的语句:数据定义语言(DDL),数据操作语言(DML)及数据控制语言(DCL)还有事务控制语言(TCL)。
数据库语言以记录集合作为操作对象
所有SQL语句接受集合作为输入,返回集合作为输出,这种集合特性允许一条SQL语句的输出作为另一条SQL语句的输入,所以SQL语句可以嵌套,这使他具有极大的灵活性和强大的功能,在多数情况下,在其他语言中需要一大段程序实现的功能只需要一个SQL语句就可以达到目的,这也意味着用SQL语言可以写出非常复杂的语句。
以上内容参考:网络-数据库语言
⑵ sql中,dml,dcl,dql,ddl分别代表什么意思
1,DML(DataManipulationLanguage):数据操作语言,用来定义数据库记录(数据)
2,DCL(DataControlLanguage):数据控制语言,用来定义访问权限和安全级别;
3,DQL(DataQueryLanguage):数据查询语言,用来查询记录(数据);
4,DDL(DataDefinitionLanguage):数据定义语言,用来定义数据库对象:库、表、列等。
(2)图数据库的查询语言有哪些扩展阅读
DML分成交互型DML和嵌入型DML两类。
依据语言的级别,DML又可分成过程性DML和非过程性DML两种。
如insert,delete,update,select(插入、删除、修改、检索)等都是DML.
交互型DML:这类DML自成系统,可在终端上直接对数据库进行操作。
嵌入型DML:这类DML是嵌入在主语言中使用。此时主语言是经过扩充能处理DML语句的语言。
过程性DML:用户编程时,不仅需要指出“做什么”(需要什么样的数据),还需要指出“怎么做”(怎么获得数据)。层状、网状的DML属于过程性语言。
非过程性DML:用户编程时,只需要指出“做什么”,不需要指出“怎么做”。关系型DML属于非过程性语言。
⑶ 数据库语言有哪些
SQL是高级的非过程化编程语言,允许用户在高层数据结构上工作。它不要求用户指定对数据的存放方法,也不需要用户了解具体的数据存放方式,所以具有完全不同底层结构的不同数据库系统可以使用相同的SQL语言作为数据输入与管理的接口。
数据定义语言(DDL),例如:CREATE、DROP、ALTER等语句。
数据操作语言(DML),例如:INSERT(插入)、UPDATE(修改)、DELETE(删除)语句。
数据查询语言(DQL),例如:SELECT语句。(一般不会单独归于一类,因为只有一个语句)。
数据控制语言(DCL),例如:GRANT、REVOKE等语句。
事务控制语言(TCL),例如:COMMIT、ROLLBACK等语句。
SQL语言包括四类种主要程序设计语言类别的语句:数据定义语言(DDL),数据操作语言(DML)及数据控制语言(DCL)还有事务控制语言(TCL)。
⑷ 图计算引擎Neo4j和Graphscope有什么区别
Neo4j是单机系统,主要做图数据库。GraphScope是由阿里巴巴达摩院智能计算实验室研发的图计算平台,是全球首个一站式超大规模分布式图计算平台,并且还入选了中 国科学技术协会“科创中 国”平台。Graphscope的代码在github.com/alibaba/graphscope上开源。SSSP算法上,GraphScope单机模式下平均要比Neo4j快176.38倍,最快在datagen-9.2_zf数据集上快了292.2倍。
⑸ 当前主流的数据库系统通常采用哪几种模型
目前最主流的sql server、oracle、mysql、db2都是关系型数据库。随着社交网站、视频网站等互联网新业务模式的兴起,各种非关系数据库模型也在不断涌现。
以下是的:
数据模型概述
1.关系模型
关系模型使用记录(由元组组成)进行存储,记录存储在表中,表由架构界定。表中的每个列都有名称和类型,表中的所有记录都要符合表的定义。SQL是专门的查询语言,提供相应的语法查找符合条件的记录,如表联接(Join)。表联接可以基于表之间的关系在多表之间查询记录。
表中的记录可以被创建和删除,记录中的字段也可以单独更新。
关系模型数据库通常提供事务处理机制,这为涉及多条记录的自动化处理提供了解决方案。
对不同的编程语言而言,表可以被看成数组、记录列表或者结构。表可以使用B树和哈希表进行索引,以应对高性能访问。
2.键值存储
键值存储提供了基于键对值的访问方式。
键值对可以被创建或删除,与键相关联的值可以被更新。
键值存储一般不提供事务处理机制。
对不同的编程语言而言,键值存储类似于哈希表。对此,不同的编程语言有不同的名字(如,Java称之为“HashMap”,Perl称之为“hash”,Python称之为“dict”,PHP称之为“associative array”),C++则称之为“boost::unordered_map<...>”。
键值存储支持键上自有的隐式索引。
键值存储看起来好像不太有用,但却可以在“值”上存储大量信息。“值”可以是一个XML文档,一个JSON对象,或者其它任何序列化形式。
重要的是,键值存储引擎并不在意“值”的内部结构,它依赖客户端对“值”进行解释和管理。
3.文档存储
文档存储支持对结构化数据的访问,不同于关系模型的是,文档存储没有强制的架构。
事实上,文档存储以封包键值对的方式进行存储。在这种情况下,应用对要检索的封包采取一些约定,或者利用存储引擎的能力将不同的文档划分成不同的集合,以管理数据。
与关系模型不同的是,文档存储模型支持嵌套结构。例如,文档存储模型支持XML和JSON文档,字段的“值”又可以嵌套存储其它文档。文档存储模型也支持数组和列值键。
与键值存储不同的是,文档存储关心文档的内部结构。这使得存储引擎可以直接支持二级索引,从而允许对任意字段进行高效查询。支持文档嵌套存储的能力,使得查询语言具有搜索嵌套对象的能力,XQuery就是一个例子。MongoDB通过支持在查询中指定JSON字段路径实现类似的功能。
4.列式存储
如果翻转数据,列式存储与关系存储将会非常相似。与关系模型存储记录不同,列式存储以流的方式在列中存储所有的数据。对于任何记录,索引都可以快速地获取列上的数据。
Map-rece的实现Hadoop的流数据处理效率非常高,列式存储的优点体现的淋漓极致。因此,HBase和Hypertable通常作为非关系型数据仓库,为Map-rece进行数据分析提供支持。
关系类型的列标对数据分析效果不好,因此,用户经常将更复杂的数据存储在列式数据库中。这直接体现在Cassandra中,它引入的“column family”可以被认为是一个“super-column”。
列式存储支持行检索,但这需要从每个列获取匹配的列值,并重新组成行。
5.图形数据库
图形数据库存储顶点和边的信息,有的支持添加注释。
图形数据库可用于对事物建模,如社交图谱、真实世界的各种对象。IMDB(Internet Movie Database)站点的内容就组成了一幅复杂的图像,演员与电影彼此交织在一起。
图形数据库的查询语言一般用于查找图形中断点的路径,或端点之间路径的属性。Neo4j是一个典型的图形数据库。
选择哪一种数据模型?
数据模型有着各自的优缺点,它们适用于不同的领域。不管是选择关系模型,还是非关系模型,都要根据实际应用的场景做出选择。也许你会发现单一的数据模型不能满足你的解决方案,许多大型应用可能需要集成多种数据模型。
⑹ 图数据库的应用场景
TranswarpStellarDB是自主研发的分布式图数据库,兼容openCypher查询语言,提供海量图数据的存储和分析能力,支持原生图存储结构,支持万亿边PB级数据存储。同时,StellarDB具备毫秒级点边查询能力,10+层的深度链路分析能力,提供近40种的图分析算法,具备数据2D和3D展示能力。星环科技StellarDB在金融、政府和社交网络等领域应用,并且在某地电信关系图谱场景实现了万亿边规模的存储和稳定运行,真正意义上将万亿级图数据库能力应用落地。
图数据库典型应用场景:
知识图谱:
于图数据库而言,知识图谱是图数据库关联最为紧密、应用范围最广的应用场景。知识图谱对海量信息进行智能化处理,形成大规模的知识库并进而支撑业务应用。
知识图谱中图数据库具有存储和查询两方面的技术优势:存储方面:图数据库提供了灵活的设计模式;查询方面:图数据库提供了高效的关联查询
作为图数据库的底层应用,知识图谱可为多种行业提供服务,具体应用场景例如电商、金融、法律、医疗、智能家居等多个领域的决策系统、推荐系统、智能问答等。
风险合规知识图谱:风险是金融的命脉,也是国家监管科技的主干。金融监管+风险合规的知识图谱是星环科技最早开始投入建设和技术研发的方向。面向超大规模图网络,星环科技率先发布了支持空间3D的图展示,避免了二维图的展示对于超过万节点的图无法清晰体现的弊端;同时结合反洗钱网络图谱利用属性图中节点带有地理定位属性,构建了跨境可疑资金转正图网络,对于可疑跨境交易一目了然。
精准营销类知识图谱:大型金融机构可能存在上千万家的B端或者C端用户,如何实现针对不同用户的精准营销?在营销知识图谱方面,星环科技面向银行开发了对公知识图谱的技术,实现了在营销端沉淀业务知识,充分发挥图谱价值,帮助银行实现诸如疫情期间小微企业信贷精准投放等应用。
投资研究类支持图谱:在金融和资本市场,最重要的金融业务就是投资,利用知识图谱刻画人类研究成果,进行知识图谱化表达和构建,也是多家券商和基金公司在探索金融科技赋能投资收益效果的发展路线图。在投资知识图谱方面,星环科技通过全栈能力,深度融合NLP+知识图谱技术,通过知识表示学习等领先的知识图谱技术,实现智能投研知识图谱,赋能投资研究场景应用。
金融领域
在金融领域,图数据库通过利用多维交叉关联信息可以深度刻画交易行为,可以有效识别规模化、隐蔽性的欺诈网络,结合机器学习、聚类分析、风险传播等相关算法,可以实时计算用户的风险评分,在风险行为发生前预先识别,有效帮助金融机构提升效率、降低风险。
反欺诈:通过账户、交易、电话、IP地址、地理位置等关键实体信息的关联关系,对风险暴露人的N层图挖掘,帮助筛选疑似欺诈人员,达到预防目的。
反欺诈信贷担保圈:中小企业通过关联企业、产业链上下游客户、关系人等相互担保,形成关系复杂的“担保网”,信贷担保圈的挖掘对企业贷款风险的识别与防范有重要意义。
股权穿透:通常是由高管、企业及关联公司构成的复杂网络,以股权为纽带,向上穿透到目标企业最终实际控制人,向下穿透到该企业任意层股权投资的所有企业及其股东。
图数据库更多应用场景
金融领域:冒名贷款、银行零售知识图谱、银行对公知识图谱、资金流向分析、企业关联图谱、事件传递图谱、个人信贷反欺诈、反洗钱知识图谱等
政企领域 :物联网、智慧城市、道路规划、智能交通、轨迹分析、疫情防控、寄递关系画像等
电信领域:深度经营分析、防骚扰、电信诈骗防范、运营商经营分析等
零售领域:智能推荐、精准营销、供应链管理、货物推荐、浏览轨迹分析等
社交领域:社区发现、好友推荐、兴趣用户推荐、舆论跟踪等
工业领域:电网分析、供应链管理、设备管理、物流分析等
医疗领域:智能诊断、电子病历、医保&保险分析等
⑺ 在SQL的分类中哪些属于DML,哪些属于DDL,哪些属于DCL
在一些公司中提交给测试团队的SQL脚本会划分为DDL、DML等,但这些概念到底是如何定义的呢?
SQL(Structure Query Language)是数据库操作的的核心语言,接下来我们通过一张图来进行分析:
DDL(Data Definition Languages)语句: 即数据库定义语句,用来创建数据库中的表、索引、视图、存储过程、触发器等
常用的语句关键字有:CREATE,ALTER,DROP,TRUNCATE,COMMENT,RENAME。
DML(Data Manipulation Language)语句: 即数据操纵语句,用来查询、添加、更新、删除等
常用的语句关键字有:SELECT,INSERT,UPDATE,DELETE,MERGE,CALL,EXPLAIN PLAN,LOCK TABLE,包括通用性的增删改查。
DCL(Data Control Language)语句: 即数据控制语句,用于授权/撤销数据库及其字段的权限(DCL is short name of Data Control Language which includes commands such as GRANT and mostly concerned with rights, permissions and other controls of the database system.)。
常用的语句关键字有:GRANT,REVOKE。
TCL(Transaction Control Language)语句: 事务控制语句,用于控制事务
常用的语句关键字有:COMMIT,ROLLBACK,SAVEPOINT,SET TRANSACTION。
DQL:(Data QueryLanguage)语句: 数据查询语言
常用的语句关键字有:SELECT, FROM, WHERE, ORDER BY, HAVING,ASC|DESC
希望对您有所帮助!~