❶ 大数据都有哪些就业方向
在大数据领域,相关专业的毕业生有着非常广泛的从业选择。从国防部、互联网创业公司到金融机构,从零售金融到互联网电商,从医疗制造到交通检测,都需要大数据项目来做创新驱动,对大数据的需求无处不在,其岗位报酬也非常丰厚。在硅谷,入门级的数据科学家的收入已经是6位数了(美元);在国内,以Hadoop开发工程师为例,Hadoop入门薪资已经达到了8K以上,工作1年可达到1.2W以上,具有2-3年工作经验的hadoop人才年薪可以达到 30万—50万。相关专业的毕业生可从事的具体岗位如下:
1.数据工程方向
毕业生能够从事基于计算机、移动互联网、电子信息、电子商务技术、电子金融、电子政务、军事等领域的Java大数据分布式程序开发、大数据集成平台的应用、开发等方面的高级技术人才,可在政府机关、房地产、银行、金融、移动互联网等领域从事各类Java大数据分布式开发、基于大数据平台的程序开发、数据可视化等相关工作,也可在IT领域从事计算机应用工作。
2.数据分析方向
毕业生能够从事基于计算机、移动互联网、电子信息、电子商务技术、电子金融、电子政务、军事等领域的大数据平台运维、流计算核心技术等方面的高级技术人才,可在政府机关、房地产、银行、金融、移动互联网等领域从事各类大数据平台运维、大数据分析、大数据挖掘等相关工作,也可在IT领域从事计算机应用工作
❷ 大数据都有哪些就业方向
大数据领域的就业岗位还是比较多的,尤其是大数据开发岗位,目前正逐渐从大数据平台开发向大数据应用开发领域覆盖。
大数据是目前互联网行业的新兴领域,人才需求大,薪资高,学好大数据之后,能够胜任的岗位也是很多的,比如大数据开发工程师、大数据分析师、大数据运维工程师、Spark工程师、Python爬虫工程师等等。我有全套大数据视频课资料+软件安装包,自取自学。
大数据学习内容主要有:
①JavaSE核心技术;
②Hadoop平台核心技术、Hive开发、HBase开发;
③Spark相关技术、Scala基本编程;
④掌握Python基本使用、核心库的使用、Python爬虫、简单数据分析;理解Python机器学习;
⑤大数据项目开发实战,大数据系统管理优化等。
你可以考察对比一下开设有IT专业的热门学校,好的学校拥有根据当下企业需求自主研发课程的能力。祝你学有所成,望采纳。
❸ 大数据专业可以从事哪些工作
大数据应用开发工程师。这是大多数据领域一个比较热门的岗位,有大量的传统应用需要进行大数据改造,因此大数据应用开发岗位有较多的人才需求。这个岗位需要掌握的知识结构包括大数据平台体系结构。
数据架构师。数据架构师是负责平台的整体数据架构设计,完成从业务模型到数据模型的设计工作,根据业务功能、业务模型,进行数据库建模设计,完成各种面向业务目标的数据分析模型的定义和应用开发,平台数据提取、数据挖掘及数据分析。
❹ 学大数据会有什么工作
大数据的岗位可以分为三大类:
大数据系统研发人员、大数据应用开发人才和大数据分析人才;
最普遍同时需求也大的是大数据系统研发工程师、大数据应用开发工程师和数据分析师
1、大数据架构工程师:
负责Hadoop集群架构设计开发、搭建、管理、运维、调优;负责数据对接和对外服务设计、开发和维护;负责大数据框架和大数据应用的程序设计、开发和维护;负责基于大数据技术对海量数据的自动分析处理和挖掘工作;
2、大数据开发工程师:
基于hadoop、spark等构建数据分析平台,进行设计、开发分布式计算业务;辅助管理Hadoop集群运行,稳定提供平台服务;基于Spark技术的海量数据的处理、分析、统计和挖掘;基于Spark框架的数据仓库的设计、开发和维护
3、大数据运维工程师:
负责大数据基础平台的运维,保障平台的稳定可用;负责应用产品部署、上线及维护;负责大数据平台资源管理、性能优化和故障处理;深入研究大数据业务相关运维技术,持续优化集群服务架构;参与设计大数据自动化运维、监控、故障处理工具。
❺ 大数据的就业岗位有哪些
大数据岗位高薪清单对于求职者来说,大数据只是所从事事业的一个方向,而职业岗位则是决定做什么事?大数据从业者/求职者可以根据自身所学技术及兴趣特征,选择一个适合自己的大数据相关岗位。下面为大家介绍十种与大数据相关的热门岗位。
1 ETL研发企业数据种类与来源的不断增加,对数据进行整合与处理变得越来越困难,企业迫切需要一种有数据整合能力的人才。ETL开发者这是在此需求基础下而诞生的一个职业岗位。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL
2 Hadoop开发随着数据规模不断增大,传统BI的数据处理成本过高企业负担加重。而Hadoop廉价的数据处理能力被重新挖掘,企业需求持续增长。并成为大数据人才必须掌握的一种技术。
3 可视化工具开发可视化开发就是在可视化工具提供的图形用户界面上,通过操作界面元素,有可视化开发工具自动生成相关应用软件,轻松跨越多个资源和层次连接所有数据。过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项独立的专业技能和岗位。
4 信息架构开发大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。
5 数据仓库研究为方便企业决策,出于分析性报告和决策支持的目的而创建的数据仓库研究岗位是一种所有类型数据的战略集合。为企业提供业务智能服务,指导业务流程改进和监视时间、成本、质量和控制。
6 OLAP开发OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。
7 数据科学研究数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。8 数据预测分析营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
8 数据预测分析营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
9 企业数据管理企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。
10 数据安全研究数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。
❻ 大数据有哪些工作岗位
1、大数据开发工程师
开发,建设,测试和维护架构,负责公司大数据平台的开发和维护,负责大数据平台持续集成相关工具平台的架构设计与产品开发等。
2、数据分析师
收集,处理和执行统计数据分析;运用工具,提取、分析、呈现数据,实现数据的商业意义,需要业务理解和工具应用能力。
3、数据挖掘工程师
数据建模、机器学习和算法实现;商业智能,用户体验分析,预测流失用户等;需要过硬的数学和统计学功底以外,对算法的代码实现也有很高的要求。
4、数据架构师
需求分析,平台选择,技术架构设计,应用设计和开发,测试和部署;高级算法设计与优化;数据相关系统设计与优化,需要平台级开发和架构设计能力。成都加米谷大数据培训机构,大数据开发,数据分析与挖掘。
5、数据库开发
设计,开发和实施基于客户需求的数据库系统,通过理想接口连接数据库和数据库工具,优化数据库系统的性能效率等。
6、数据库管理
数据库设计、数据迁移、数据库性能管理、数据安全管理,故障检修问题、数据备份、数据恢复等。
7、数据科学家
数据挖掘架构、模型标准、数据报告、数据分析方法;利用算法和模型提高数据处理效率、挖掘数据价值、实现从数据到知识的转换。
8、数据产品经理
把数据和业务结合起来做成数据产品;平台线提供基础平台和通用的数据工具,业务线提供更加贴近业务的分析框架和数据应用。
❼ 大数据有关的工作有哪些
1、数据挖掘工程师
数据建模、机器学习和算法实现;商业智能,用户体验分析,预测流失用户等;需要过硬的数学和统计学功底以外,对算法的代码实现也有很高的要求
2、数据架构师
需求分析,平台选择,技术架构设计,应用设计和开发,测试和部署;高级算法设计与优化;数据相关系统设计与优化,需要平台级开发和架构设计能力。成都加米谷大数据培训机构,大数据开发,数据分析与挖掘。
3、数据库开发
设计,开发和实施基于客户需求的数据库系统,通过理想接口连接数据库和数据库工具,优化数据库系统的性能效率等
4、数据库管理
数据库设计、数据迁移、数据库性能管理、数据安全管理,故障检修问题、数据备份、数据恢复等
5、数据科学家
数据挖掘架构、模型标准、数据报告、数据分析方法;利用算法和模型提高数据处理效率、挖掘数据价值、实现从数据到知识的转换
6、数据产品经理
把数据和业务结合起来做成数据产品;平台线提供基础平台和通用的数据工具,业务线提供更加贴近业务的分析框架和数据应用
❽ 大数据所从事什么工作
大数据技术专业可以从事的工作有这些:
视数据的机构已经越来越多,上到国防部,下到互联网创业公司、金融机构需要通过大数据项目来做创新驱动,需要数据分析或处理岗位也很多;常见的食品制造、零售电商、医疗制造、交通检测等也需要数据分析与处理,如优化库存,降低成本,预测需求等。人才主要分成三大类:大数据系统研发类、大数据应用开发类、大数据分析类,热门岗位有:
1.大数据系统架构师
大数据平台搭建、系统设计、基础设施。技能:计算机体系结构、网络架构、编程范式、文件系统、分布并行处理等。
2.大数据系统分析师
面向实际行业领域,利用大数据技术进行数据安全生命周期管理、分析和应用。技能:人工智能、机器学习、数理统计、矩阵计算、优化方法。
3.hadoop开发工程师。
解决大数据存储问题。
4.数据分析师
不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
作为一名数据分析师,至少需要熟练SPSS、STATISTIC、Eviews、SAS、大数据魔镜等数据分析软件中的一门,至少能用Acess等进行数据库开发,至少掌握一门数学软件如matalab、mathmatics进行新模型的构建,至少掌握一门编程语言。总之,一个优秀的数据分析师,应该业务、管理、分析、工具、设计都不落下。
5.数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。经常会用到的语言包括Python、Java、C或者C++,有时用MapRece写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合
6.大数据可视化工程师
随着大数据在人们工作及日常生活中的应用,大数据可视化也改变着人类的对信息的阅读和理解方式。从网络迁徙到谷歌流感趋势,再到阿里云推出县域经济可视化产品,大数据技术和大数据可视化都是幕后的英雄
大数据可视化工程师岗位职责:1、 依据产品业务功能,设计符合需求的可视化方案。2、 依据可视化场景不同及性能要求,选择合适的可视化技术。3、 依据方案和技术选型制作可视化样例。4、 配合视觉设计人员完善可视化样例。5、 配合前端开发人员将样例组件化。
想了解更多大数据从事工作的问题, “CDA 数据分析师”具体指在互联网、金融、零售、咨询、电信、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、 提供决策的新型数据分析人才。