① 什么事云计算和大数据的解释
云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法.
② 什么是云计算和大数据
什么是云计算和大数据?云计算与大数据要学啥
近年来,云计算可谓是出尽了风头。无论是IT设备厂商、电信运营商,还是服务提供商、内容提供商,都纷纷“找门子”与云计算“拉关系”,大家削尖了脑袋拼命地往云计算这艘船上挤,如果自己的产品、理念或者技术与云计算根本沾不上边,那简直都羞于见人。云计算似乎无所不能,无处不在,一时间风靡全球。国内外各大媒体更是争先恐后地追捧云计算的独特魅力。
云计算就是把数据以最廉价的成本变成财富。这就像老板跟更秘书的关系一样一样的,大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。信息社会,数据量不仅在快速增长,同时技术也在不断提高,近几年大多数企业都因为大数据二尝到了甜头。在海量数据的前提下,如果提取、处理和利用数据的成本超过了数据价值本身,那么有价值相当于没任何价值。来自公有云、私有云以及混合云之上的究极云计算,对于降低数据提取过程中的成本,成为了最合格的秘书。
第一次收集的数据中,一般而言,90%属于无用数据,因此需要过滤出能为企业提供经济利益的可用数据,看有了这个十八般武艺的秘书,省了多大的事儿啊,回到正题,在大量无用数据中,重点需过滤出两大类,一是大量存储着的临时信息,几乎不存在投入必要;二是从公司防火墙外部接入到内部的网络数据,价值极低。云计算可以提供按需扩展的计算和存储资源,可用来过滤掉无用数据,其中公有云是处理防火墙外部网络数据的最佳选择。
数据分析阶段,可引入公有云和混合云技术,此外,类似Hadoop的分布式处理软件平台可用于数据集中处理阶段。当完成数据分析后,提供分析的原始数据不需要一直保留,可以使用私有云把分析处理结果,即可用信息导入公司内部。
③ 大数据和云计算是什么
大数据(big data)是一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
云计算(cloud computing)云计算是一种按使用量付费的模式,这种模式提供可用的、便捷的、按需的网络访问, 进入可配置的计算资源共享池(资源包括网络,服务器,存储,应用软件,服务),这些资源能够被快速提供,只需投入很少的管理工作,或与服务供应商进行很少的交互。云是网络、互联网的一种比喻说法。
二者:大数据需要云计算,云计算需要大数据
云计算为大数据处理提供了一个很好的平台。云计算强调的是计算,而大数据则是计算的对象。如果结合实际的应用,前者强调的是计算能力,后者看重的存储能力。
④ 什么是云计算什么是大数据二者有何联系
云计算的关键词在于“整合”,无论你是通过现在已经很成熟的传统的虚拟机切分型技术,还是通过google后来所使用的海量节点聚合型技术,他都是通过将海量的服务器资源通过网络进行整合,调度分配给用户,从而解决用户因为存储计算资源不足所带来的问题。
大数据正是因为数据的爆发式增长带来的一个新的课题内容,如何存储如今互联网时代所产生的海量数据,如何有效的利用分析这些数据等等。
他俩之间的关系你可以这样来理解,云计算技术就是一个容器,大数据正是存放在这个容器中的水,大数据是要依靠云计算技术来进行存储和计算的。
(4)云计算大数据是什么意思扩展阅读:
云计算常与网格计算、效用计算、自主计算相混淆。
网格计算:分布式计算的一种,由一群松散耦合的计算机组成的一个超级虚拟计算机,常用来执行一些大型任务;
效用计算:IT资源的一种打包和计费方式,比如按照计算、存储分别计量费用,像传统的电力等公共设施一样;
自主计算:具有自我管理功能的计算机系统。
事实上,许多云计算部署依赖于计算机集群(但与网格的组成、体系结构、目的、工作方式大相径庭),也吸收了自主计算和效用计算的特点。
被普遍接受的云计算特点如下:
(1) 超大规模
“云”具有相当的规模,Google云计算已经拥有100多万台服务器, Amazon、IBM、微软、Yahoo等的“云”均拥有几十万台服务器。企业私有云一般拥有数百上千台服务器。“云”能赋予用户前所未有的计算能力。
(2) 虚拟化
云计算支持用户在任意位置、使用各种终端获取应用服务。所请求的资源来自“云”,而不是固定的有形的实体。应用在“云”中某处运行,但实际上用户无需了解、也不用担心应用运行的具体位置。只需要一台笔记本或者一个手机,就可以通过网络服务来实现我们需要的一切,甚至包括超级计算这样的任务。
(3) 高可靠性
“云”使用了数据多副本容错、计算节点同构可互换等措施来保障服务的高可靠性,使用云计算比使用本地计算机可靠。
(4) 通用性
云计算不针对特定的应用,在“云”的支撑下可以构造出千变万化的应用,同一个“云”可以同时支撑不同的应用运行。
(5) 高可扩展性
“云”的规模可以动态伸缩,满足应用和用户规模增长的需要。
(6) 按需服务
“云”是一个庞大的资源池,你按需购买;云可以像自来水,电,煤气那样计费。
大数据特征:
1 容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息;
2 种类(Variety):数据类型的多样性;
3 速度(Velocity):指获得数据的速度;
4 可变性(Variability):妨碍了处理和有效地管理数据的过程。
5 真实性(Veracity):数据的质量
6 复杂性(Complexity):数据量巨大,来源多渠道
7 价值(value):合理运用大数据,以低成本创造高价值
想要系统的认知大数据,必须要全面而细致的分解它,着手从三个层面来展开:
第一层面是理论,理论是认知的必经途径,也是被广泛认同和传播的基线。在这里从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
第二层面是技术,技术是大数据价值体现的手段和前进的基石。在这里分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
第三层面是实践,实践是大数据的最终价值体现。在这里分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的蓝图。
⑤ 大数据和云计算的区别是什么啊
大数据领域的人才需求主要围绕大数据的产业链展开,涉及到数据的采集、整理、存储、安全、分析、呈现和应用,岗位多集中在大数据平台研发、大数据应用开发、大数据分析和大数据运维等几个岗位。大数据本身除了要有数据、采集、汇聚一定量的数据之外,更重要的是数据的处理、挖掘、分析、可视化、应用这样一整套的过程。云计算是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。二者关系:大数据常和云计算联系到一起,因为实时的大型数据集分析需要分布式处理框架来向数十、数百或甚至数万的电脑分配工作。大数据和云计算各有不同的关注点,但是在技术体系结构上,都是以分布式存储和分布式计算为基础,所以二者之间的联系也比较紧密。可以说,云计算充当了工业革命时期的发动机的角色,而大数据则是电。
⑥ 云计算和大数据的区别
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。云是网络、互联网的一种比喻说法。过去在图中往往用云来表示电信网,后来也用来表示互联网和底层基础设施的抽象。狭义云计算指IT基础设施的交付和使用模式,指通过网络以按需、易扩展的方式获得所需资源;广义云计算指服务的交付和使用模式,指通过网络以按需、易扩展的方式获得所需服务。这种服务可以是IT和软件、互联网相关,也可是其他服务。它意味着计算能力也可作为一种商品通过互联网进行流通。
大数据(big data),或称海量数据,指的是所涉及的资料量规模巨大到无法透过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。大数据的4V特点:Volume、Velocity、Variety、Veracity。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
大数据管理,分布式进行文件系统,如Hadoop、Maprece数据分割与访问执行;同时SQL支持,以Hive+HADOOP为代表的SQL界面支持,在大数据技术上用云计算构建下一代数据仓库成为热门话题。从系统需求来看,大数据的架构对系统提出了新的挑战:
1、集成度更高。一个标准机箱最大限度完成特定任务。
2、配置更合理、速度更快。存储、控制器、I/O通道、内存、CPU、网络均衡设计,针对数据仓库访问最优设计,比传统类似平台高出一个数量级以上。
3、整体能耗更低。同等计算任务,能耗最低。
4、系统更加稳定可靠。能够消除各种单点故障环节,统一一个部件、器件的品质和标准。
5、管理维护费用低。数据藏的常规管理全部集成。
6、可规划和预见的系统扩容、升级路线图。
⑦ 什么是云计算大数据
云计算(cloud computing)是基于互联网的相关服务的增加、使用和交付模式,通常涉及通过互联网来提供动态易扩展且经常是虚拟化的资源。
⑧ 什么叫大数据,与云计算有何关系
大数据(big data),是指无法在可承受的时间范围内用常规软件工具进行捕捉、管理和处理的数据集合。
大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。
从技术上看,大数据与云计算的关系就像一枚硬币的正反面一样密不可分。大数据必然无法用单台的计算机进行处理,必须采用分布式计算架构。它的特色在于对海量数据的挖掘,但它必须依托云计算的分布式处理、分布式数据库、云存储和虚拟化技术。
⑨ 云计算和大数据是什么关系
计算和数据是不一样的,云计算和大数据当然也不一样。计算的对象是数据,云计算的对象是云数据(或者称大数据,确切的也不一样,但可以一致地理解)。大数据就是海量数据。
⑩ 大数据和云计算的区别
1、目的不同:大数据是为了发掘信息价值,而云计算主要是通过互联网管理资源,提供相应的服务。
2、对象不同:大数据的对象是数据,云计算的对象是互联网资源以及应用等。
3、背景不同:大数据的出现在于用户和社会各行各业所产生大的数据呈现几何倍数的增长;云计算的出现在于用户服务需求的增长,以及企业处理业务的能力的提高。
4、价值不同:大数据的价值在于发掘数据的有效信息,云计算则可以大量节约使用成本。
结构
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长60%。
大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
以上内容参考:网络-大数据