导航:首页 > 数据处理 > 怎么实现数据管理

怎么实现数据管理

发布时间:2022-11-30 11:51:35

1. 企业如何做好数据管理

第一、建立自己企业的内部管理局域网络。
第二、对网路终端实行加密及管理员制度。
第三、对企业的数据中心进行加密和管理员制度,并进行重要数据的 备份工作。
第三、企业员工要有保密意识和责任。对泄露企业秘密的员工要进行处罚!

2. 面对数据治理的挑战及难点,如何找到最佳解决办法

一、建立数据治理计划时,您将遇到几个挑战:

·  数据治理是更大的 IT治理策略的一部分。  数据与IT部门需要相互配合才能成功。

·  进行任何类型的优化都很难,让员工关心数据治理更是难上加难。  需要激励和动力来让你的员工遵循新数据治理计划。

·  数据治理工作需要灵活地适应团队需求,并且对用户来说必须简单易用。  如果数据治理阻碍了政正常业务工作,则不会促进业务目标。

二、面对这些挑战,您应该如何实施数据治理方案?

以下是8点数据治理最佳实践方法,它们将帮助您进行数据治理。

1.  为您的数据设置格式标准, 并在后期处理和将数据提取到大数据平台中时使用技术来实施这些标准。您将要从许多不同的来源中提取数据,因此您应该对大数据系统中的数据进行规范化。

2.  非托管数据也是重要数据! 文件,文件夹和共享中的数据是您最有价值的数据中的一部分,而且通常比托管数据具有更大的风险。确保您的数据治理策略涵盖非结构化数据。

3. 尽早制定 业务目标 以进行数据治理,并分配一名首席数据官(CDO)。使CDO负责管理和实现数据治理目标。

4.  把事情简单化! 数据治理不是企业大多数人的主要工作。最大限度地减少对个人贡献者和团队的影响。

5.  为数据治理团队的成员建立不同的角色。 数据所有者是关键,因为它们与创建和管理的数据最接近。您可以分配数据管理人员与数据所有者合作,以进行指导并促进沟通。您的数据治理团队应具有跨职能并有权推动您的数据治理计划。

6.  对所有数据进行分类和标记。 为元数据建立标准,以促进您的业务目标并允许重复使用数据。

7.  用几种不同的方式衡量您的进度。 您可以收集的指标越多越好。数据治理的一些关键指标可能是您要保存多少陈旧数据,已分配数据所有者的文件夹数量以及所创建的敏感数据数量。

8.  尽可能自动化。  自动化工作流程,批准流程, 数据请求,权限请求以及您可以执行的其他所有操作,以使数据治理计划能够高效运转。

三、数据治理工具推荐--睿治数据治理工具

面对以上8点数据治理最佳实践方法,我为您推荐一款好用的数据治理工具配合实施数据治理方案,不仅可以保证您的数据治理项目按计划实施,也可以将每一个过程都以实时可视化的方式展示给您。以下为数据治理工具推荐:

睿治数据治理平台融合数据集成、数据交换、实时计算存储、元数据管理、数据标准管理、数据质量管理、主数据管理、数据资产管理、数据安全管理、数据生命周期管理十大产品模块,打通数据治理各个环节,十大产品模块可独立或任意组合使用,快速满足政府、企业各类不同的数据治理场景。

四、睿治数据治理工具实施案例

山东某能源集团大数据资产平台

建设内容:

建设集团 数据治理体系 ,从根本解决问题,掌握数据来龙去脉,发现数据质量原因从源头提升数据质量;实现数据赋能对人财物产供销环数据集市建设,全面实现业务人员自助取数分析;建设集团数据应用商店实现数字化运营,实现数据市场化管理,通过智能化、自动化减少运营成本,降低安全风险,提升工作效率,增加企业市场竞争力。

项目价值:

基于数据治理体系建立集团大数据资产平台,运用大数据技术实现数据采集、清洗、分析建模的设计,形成集团高质量数据资产,通过数据资产目录对全集团发布,并用业务元数据解释数据含义,便于业务人员定位自己所需数据,与此同时,业务人员可以对自己所需数据提出申请,审批通过后,可直接基于治理数据利用敏捷分析工具实现自助探索分析,真正实现数据赋能,保障日常生产经营管理。

免费试用数据治理工具

3. 企业如何进行数据化管理

导语:对于企业来讲,数据化运用和管理无处不在,无论是企业日常运营,还是企业的营销企划,都是企业所有管理者或经营者无可否认的重要命题。那么企业如何进行数据化管理,一起了解一下吧!

然而,做好数据化应用,是一件系统而又复杂的课题。企业如何真正把生产计划、营销战略、财务战略、经营战略等体系有效的结合运用是非常考验管理者知识智慧的。但有的企业主根本无视统计管理、数据分析与经营和营销的关联性。

在当今强调竞争优势的经济环境中,如果不能把握精确性的专业竞争,不根据各个专业性的概率指标与企业各种资源进行整体的科学组合,就无法使资源配置得到有效利用,资源整合价值最大化就会成为一个泡影,实施数据化管理,培育企业的竞争优势就会成为一个空话。

一、明确数据化管理的基本要求

1、管理者重视数据化管理,是实施数据化管理的基本条件,管理者重视数据化,重视人的因素,确立人和数据的有效组合,充分利用数据的作用或功能,认知和使用数据的价值,调动人的积极性和主观能动性,才能构建数据化管理平台按照数据化要求开展相关工作。

2、认清数据与管理的关系。企业不重视数据管理,就无法认清数据与管理的关系。很多管理者会经常通过数据分析来比较管理效率差异的原因。如生产管理中,两个部门人员、设备、材料、时间等要素完全一致的情况下,但生产的效率不一样,我就可以通过生产流程中的数据分解,进行数据分析,就可确认是员工士气、还是员工熟练情况和或管理因素导致生产效率不同的原因。

3、采集的数据必须是真实可靠的。数据因人而存在,是从管理活动中得来。数据的采集方法和管理要有制度和流程规范,不能随心所欲,更不能估测和伪造数据。数据的真实性对企业的分析和决策非常重要。其真实性一方面要依靠人的道德行为来保证,另一方面制度的保障是不可缺少的。在双重要求下我们的数据采集才能有保障。

4、数据是连续性和系统性的。在管理活动中,数据采集不能时断时续。不能只采集某一个方面,否则影响数据的准确性和完整性,企业各业务单元或各部门可按照年度、季度、月度以及每周、每日来采集企业各方面管理和业务发生的数据,进行归纳和统计。

二、以目标管理为基础拓展数字化管理的空间

数据化管理是以财务管理和目标管理为基础,由内向外拓展的。企业在战略目标的指导下,将长期经营目标的所确定的数据向年度进行分解,年度向季度、月度分解,形成了一个金字塔式的数据链。企业各个职能部门围绕着这个时段核心数据设计自己的工作计划,确定自己所要完成数量目标。这样的数据指标就成为管理和工作的中心。工作的所有结果是为完成数量目标进行的。

从目标管理的角度来看,更多的是财务数量指标,财务指标为核心数据是毋庸质疑的,但核心数据目标的完成是由其他数据支撑的。如:企业员工的满意度,客户的满意度,销售终端增长数量的速度,企业投入新技术开发的.费用,高技术人员占员工的比例等等诸多数量指标,都是用于支持财务数据目标实现的基础。因为很多工作都是依据这些数量指标进行分解,进行分析总结,进行改进和调整。

因此,我们在进行数据管理中,各个业务单元必须让数据化向企业管理的每一个角落延伸,使其在管理流程、标准及各个模块都有数据量化的清晰足迹。这样我们围绕着数据进行工作,工作效率和效果将有更多的保障。

三、数据化运用管理必须与制度化、流程化、图表化的连接

在我们很多企业,数据化管理主要就是财务数据,和其他方面看起来似乎没有关系,实际在管理运用上,离开制度化和流程化,数据化管理就没有根基,无法进行有效管理。

数据化管理讲究的是系统分析,科学评估。

只有深刻了解其过程的每个环节及其特点,确定出标准、流程,才能够制定出科学的决策与管理办法。如生产管理中,管理者选择合适且技术熟练的工人,进行工时、动作、材料研究,在试验过程中把工人的每一项动作、每一道工序、每一种材料所使用的数据都准确记录下来,就可得出完成该项工作所需要的总时间、总材料,据此定出一个工人“合理的时、日、月工作量和材料消耗量”。并将规程和标准的操作流程编写成书面材料,按照此教育训练员工。

通过制度化的管理要求,长期不懈的执行,这样数据化在制度化的基础上与流程化、标准化连接起来。就有一个基本保障。如果同时就生产中的各个要素进行整理成规范的表格,按照规范进行填写,并规定统计、分析、上报时间,这就在生产管理中就形成数据化管理的基础。如这样的管理长期坚持,不断修正和完善,长此以往累积成企业一整套规范运作的规程与习惯,同样也可构成企业独特的核心优势。

四、必须为数据化管理的设计载体

企业都会每天产生大量的数据,如生产数据、库存数据、财务数据、产品数据,销售数据等。但其必须有一个合适的载体进行运转,使其能产生有效价值,这就需要我们设计一个载体——专业化的图表(或表单)或专业的管理软件。这样我们一方面可运用图表等工具进行整理分析,一方面可借助计算机信息软件技术进行有效快捷的管理活动,但现在许多中小企业在粗放式管理阶段还无法进行计算机软件技术的应用。因此,我们就图表工具的应用进行简要的阐述。

表单设计从非专业角度可以讲,咨询公司顾问更多使用的数据分析工具。我们管理者更多的使用的是统计工具。这就我们从财务管理和统计管理方面设计各种表格。进行归纳和总结。

企业在进行管理图表或表单设计上,必须根据自身的具体情况,设计合理和完善的表。如:日常营业表单、各类费用表单、各类经营管理表单、人力资源相关管理表单等各种表单,并将表单收集的数据按部门分、按级别分、按要求分、按经营分、按时间分等进行分类。设计好编号、类别,等级、审核、制表、抄送等相关信息。将这些信息按照标准的流程进行填写、审核、分析和管理,以便使管理活动更加富有成效。

特别是产供销一体化的企业,管理活动复杂,表单众多,在没有管理软件应用支持的情况下,这就需要管理者对一些“共性表”进行合并和筛检,对“个性表”进行优化,尽可能使表单管理简要化,一些繁杂可有可无的表单需要及时整理处置,以减少表单管理的复杂性。在进行表单等工具的设计和管理上,我们以电脑操作系统为最基础的工具,它的许多基本功能就可实现和掌握数据化管理的使用工具。

当然,如企业条件许可,也可引进管理软件的进行应用,来提高管理效率。用图表或计算机进行数据积累、数据分析、建立相关模块,同时确立分析方法、构建数学模型、设计应用系统、提供决策支持等。使用各种方法挖掘数据应用技术,管理效率会得到进一步的提升。

4. 如何有效的进行数据治理和数据管控

从技术实施角度看,主要包含“理”“采”“存”“管”“用”这五个,即业务和数据资源梳理、数据采集清洗、数据库设计和存储、数据管理、数据使用。

数据资源梳理:数据治理的第一个步骤是从业务的视角厘清组织的数据资源环境和数据资源清单,包含组织机构、业务事项、信息系统,以及以数据库、网页、文件和 API 接口形式存在的数据项资源,本步骤的输出物为分门别类的数据资源清单。

数据采集清洗:通过可视化的 ETL 工具(例如阿里的 DataX,Pentaho Data Integration)将数据从来源端经过抽取 (extract)、转换 (transform)、加载 (load) 至目的端的过程,目的是将散落和零乱的数据集中存储起来。

基础库主题库建设:一般情况下,可以将数据分为基础数据、业务主题数据和分析数据。基础数据一般指的是核心实体数据,或称主数据,例如智慧城市中的人口、法人、地理信息、信用、电子证照等数据。主题数据一般指的是某个业务主题数据,例如市场监督管理局的食品监管、质量监督检查、企业综合监管等数据。而分析数据指的是基于业务主题数据综合分析而得的分析结果数据,例如市场监督管理局的企业综合评价、产业区域分布、高危企业分布等。那么基础库和主题库的建设就是在对业务理解的基础上,基于易存储、易管理、易使用的原则抽像数据存储结构,说白了,就是基于一定的原则设计数据库表结构,然后再根据数据资源清单设计数据采集清洗流程,将整洁干净的数据存储到数据库或数据仓库中。

元数据管理:元数据管理是对基础库和主题库中的数据项属性的管理,同时,将数据项的业务含义与数据项进行了关联,便于业务人员也能够理解数据库中的数据字段含义,并且,元数据是后面提到的自动化数据共享、数据交换和商业智能(BI)的基础。需要注意的是,元数据管理一般是对基础库和主题库中(即核心数据资产)的数据项属性的管理,而数据资源清单是对各类数据来源的数据项的管理。

血缘追踪:数据被业务场景使用时,发现数据错误,数据治理团队需要快速定位数据来源,修复数据错误。那么数据治理团队需要知道业务团队的数据来自于哪个核心库,核心库的数据又来自于哪个数据源头。我们的实践是在元数据和数据资源清单之间建立关联关系,且业务团队使用的数据项由元数据组合配置而来,这样,就建立了数据使用场景与数据源头之间的血缘关系。 数据资源目录:数据资源目录一般应用于数据共享的场景,例如政府部门之间的数据共享,数据资源目录是基于业务场景和行业规范而创建,同时依托于元数据和基础库主题而实现自动化的数据申请和使用。

质量管理:数据价值的成功发掘必须依托于高质量的数据,唯有准确、完整、一致的数据才有使用价值。因此,需要从多维度来分析数据的质量,例如:偏移量、非空检查、值域检查、规范性检查、重复性检查、关联关系检查、离群值检查、波动检查等等。需要注意的是,优秀的数据质量模型的设计必须依赖于对业务的深刻理解,在技术上也推荐使用大数据相关技术来保障检测性能和降低对业务系统的性能影响,例如 Hadoop,MapRece,HBase 等。

商业智能(BI):数据治理的目的是使用,对于一个大型的数据仓库来说,数据使用的场景和需求是多变的,那么可以使用 BI 类的产品快速获取需要的数据,并分析形成报表,像派可数据就属于专业的BI厂商。

数据共享交换:数据共享包括组织内部和组织之间的数据共享,共享方式也分为库表、文件和 API 接口三种共享方式,库表共享比较直接粗暴,文件共享方式通过 ETL 工具做一个反向的数据交换也就可以实现。我们比较推荐的是 API 接口共享方式,在这种方式下,能够让中心数据仓库保留数据所有权,把数据使用权通过 API 接口的形式进行了转移。API 接口共享可以使用 API 网关实现,常见的功能是自动化的接口生成、申请审核、限流、限并发、多用户隔离、调用统计、调用审计、黑白名单、调用监控、质量监控等等。

5. 企业数据化管理怎么做

企业想要建立数据化管理,实现高效运营,最重要的是遵循基本两个原则,鼎捷软件以下就以制造业为例,为各位企业实现数据化管理提供新思路:

1.上下都认同才能发挥力量

若想让企业实现数据化管理,建立新竞争力,就得从建立全公司的新文化开始。老板带头,全员参与,让全公司的每个人都能认可数据是可以帮助到其工作的。

未来公司的管理运作都是基于真实、实时可搜集的数据来来进行沟通、目标设定。公司不会因为买了一台新机台或机器手臂,或导入一套新系统,竞争力就会提升。竞争力的提升完全来自于公司管理的强化,而且是基于实时且正确的数据的管理。

当全员内上下都从心里深处认同,数据是在帮助自己,不管是命令下达还是成果回报,不管是机台控制或是良率改善,这些实时真实搜集的数据就是公司内共通的新语言,那么大家的方向与行动才会确实且精准的校准在一起,整体的力量也才能发挥。

2.建立数据文化

曾经到访过某家制造业工厂,该厂的制造副总清楚地认识到数据文化的重要性,也明白传统工作模式中使用的PPT带有伪善性,问题无法基于PPT当场厘清与解决,会上决策到会后执行存在时间差,耗时且无法追踪进度。

基于此,该工厂无论晨会、月会,在会议中直接开系统、拉数据,当场报告与讨论。

实施过程中,第一关是IT主管,数据读取速度、数据呈现等因素都会影响会议进程,但随着不断改进,该工厂数据读取实现30秒内完成。

第二关是现场主管,这种会议模式相当于完全透明、毫无遮掩的被全盘检视工作,任何异常会被实时指出,透过交叉比对,究其原因、指派任务并解决问题。根因与负责人也会被正确指派与快速解决。

正是因为这种工作模式,该工厂效率不到三个月大幅提升。

其中最为关键的是,该工厂的制造副总在实施这套工作模式时,没有以强硬的态度强制实施,而是比以前加倍包容,以共同努力的态度与员工共同适应新模式,以数据讲话,找问题求改善,与下属一起承担、面对与解决,持续以这种方式在工厂内部建立起数据文化。

当文化被建立且认同后,数据的力量才得以真正被发挥,从而持续地强化企业竞争力。

6. 如何做好数据管理工作

一、认识做好数据管理工作的重要意义,从思想上高度重视数据管理工作
做好数据管理工作对银行经营管理来说,有着重要的意义。通过培训,我改变了以前那种“数据管理就是完成信息统计报表报送和数据整理”的肤浅认识,深刻认识到数据管理工作内涵丰富,尤其是大数据分析和渠道建设创新等工作要做好、做深做透不是一件容易的事情,而且做好数据管理工作对银行意义重大:
从外部来看,做好数据管理工作是满足信息披露要求的有力保证。目前我国已初步建立了一套规范上市银行信息披露行为的规章制度,我们要加强数据管理,严格按照外部监管部门的统计管理制度要求完成各类统计报表上报、提高数据质量,才能满足信息披露要求。
从内部来看,做好数据管理工作有助于全面提升银行核心竞争力.数据管理部门通过对数据的整理加工,分析挖掘,能为领导决策提供有效的数据信息,有力地支持和服务全行业务发展。特别是当前外部对银行数据质量要求日益严格,我行战略转型也需要数据管理工作具有扎实的数据基础和强大的分析能力。
二、了解掌握并执行数据管理相关制度和要求,为做好数据管理工作打下基础
数据管理工作,除了报送各类数据信息统计报表以外,更重要的工作应该包括对数据信息进行有效加工和数据管控,大数据推广应用、调研分析等方面。而我们只有学习掌握了数据管理相关制度才能够正确执行统计管理制度,为提高数据质量打下基础。
制度学习方面虽然有看似有些枯燥,但这些是我们必须遵守的,从国家层面来看,国家颁布了一系列数据管理相关的法规和办法,如:《统计法》、《金融统计管理规定》、《银行业监管统计管理暂行办法》、《征信业管理条例》。特别是本次培训中,柳纠夫副总经理反复强调我们要依法合规开展征信工作,如果有违反条例规定未按照与个人信息主体约定的用途使用个人信息或者未经个人信息主体同意向第三方提供个人信息,情节严重或者造成严重后果的,将被有权机关罚款;如构成犯罪,将依法追究刑事责任。“知规才能执规”,商业银行只有依法进行金融统计工作、规范金融统计活动,才能保证整个金融统计活动有序、有效开展。除了国家颁布的相关法规及办法以外,我们还要掌握建行内部制定下发的各项制度规定,严格遵照执行,保证数据信息质量和客户信息安全。

7. Rust编程语言实现数据管理

如果要实现一个数据管理的功能

该如何是好呢

假如可以用vector当做一个池

来存储数据

池里每一个位置都存储一个数字

用来表示代数

表示这个位置的数据是否更改

代数也是更改次数

当一个位置重用了

代数增加

保留先前创建的方法句柄

让这个位置失效

方法句柄用来访问数据

它包含池中某位置的数据和代数

数据放入池中

就会产生一个方法句柄和这个数据关联

此时方法句柄的代数和数据的代数相当

方法句柄是有效状态直到数据被释放

这个位置就变成空闲

所有指向这个数据的方法句柄都失效

这个池可以被CPU缓存

所以数据访问非常快

在 游戏 场景里

场景节点可以存放其它节点的方法句柄

当需要数据的时候

可以取走并保留数据位置是占用状态

取走的是数据的索引的包装

用来把数据放回池里

取走的还有数据对象本身

如果想取走数据不放回池了

就需要一个方法实现

使数据位置是空闲状态

否则这个数据位置就不能用了

引发异常

8. 大数据时代如何做好数据治理

企业数据分析系统的数据来源是各个业务系统或手工数据,这些数据的格式、内容等都有可能不同。如果不进行数据治理,数据的价值难以发挥。只有对数据标准进行规范,管理元数据、数据监控等,才能得到高质量的数据。得到规范的数据后,才可在此基础上进行主题化的数据建模、数据挖掘、数据分析等。

2013年被众多的IT人定义为中国的大数据元年,这一年国内的大数据项目开始在交通、电信、金融部门被广泛推动。各大银行对Hadoop的规划、POC尤其风生水起,带动了一波大数据应用的热潮,这个热潮和当初数据仓库进入中国时的2000年左右很相似:应用还没有想好,先归集一下数据,提供一些查询和报表,以技术建设为主,业务推动为辅。这就导致了这股Hadoop热潮起来的时候,传统企业都是以数据归集为主的,而BAT这样的企业则天生以数据为生,早早进入了数据驱动技术和业务创新的阶段。

随着Hadoop技术的提升,数据如何进来,如何整合,开展什么样的应用都已经有了成熟的案例,可是,同传统数仓时代一样,垃圾进垃圾出,如何破?相比传统数仓时代,进入Hadoop集群的数据更加的多样、更加的复杂、量更足,这个数仓时代都没有处理好的事情,如何能够在大数据时代处理好,这是所有大数据应用者最最期盼的改变,也是大数据平台建设者最有挑战的难题:数据治理难的不是技术,而是流程,是协同,是管理。 睿治数据治理平台平台架构

元数据:采集汇总企业系统数据属性的信息,帮助各行各业用户获得更好的数据洞察力,通过元数据之间的关系和影响挖掘隐藏在资源中的价值。

数据标准:对分散在各系统中的数据提供一套统一的数据命名、数据定义、数据类型、赋值规则等的定义基准,并通过标准评估确保数据在复杂数据环境中维持企业数据模型的一致性、规范性,从源头确保数据的正确性及质量,并可以提升开发和数据管理的一贯性和效率性。

数据质量:有效识别各类数据质量问题,建立数据监管,形成数据质量管理体系,监控并揭示数据质量问题,提供问题明细查询和质量改进建议,全面提升数据的完整性、准确性、及时性,一致性以及合法性,降低数据管理成本,减少因数据不可靠导致的决策偏差和损失。

数据集成:可对数据进行清洗、转换、整合、模型管理等处理工作。既可以用于问题数据的修正,也可以用于为数据应用提供可靠的数据模型。

主数据:帮助企业创建并维护内部共享数据的单一视图,从而提高数据质量,统一商业实体定义,简化改进商业流程并提高业务的响应速度。

数据资产:汇集企业所有能够产生价值的数据资源,为用户提供资产视图,快速了解企业资产,发现不良资产,为管理员提供决策依据,提升数据资产的价值。

数据交换:用于实现不同机构不同系统之间进行数据或者文件的传输和共享,提高信息资源的利用率,保证了分布在异构系统之间的信息的互联互通,完成数据的收集、集中、处理、分发、加载、传输,构造统一的数据及文件的传输交换。

生命周期:管理数据生老病死,建立数据自动归档和销毁,全面监控展现数据的生命过程。

数据安全:提供数据加密、脱敏、模糊化处理、账号监控等各种数据安全策略,确保数据在使用过程中有恰当的认证、授权、访问和审计等措施。

建立完整的、科学的、安全的、高质量的数据管控技术体系,是首要的任务。作为数据管控的基石,为了更好支撑后续工作的开展,技术体系必须一步到位,是功能完备、高质量、高扩展性的,而不是仅实现部分功能,或者功能不完善的“半成品”。

叠加更多业务数据、细化数据业务属性与管理属性、优化与调整数据管控流程,尤其是适应未来的现代企业数据管控制度的建立完善,是逐步积累推广、不断磨合改进的长期过程。这些工作应及早启动,并成为后续大数据平台建设工作的重点。

谈大数据时代的数据治理 当前要做的是功能框架的完善,而完善的着力点则是“数据资产目录”:用资产化的视角来管理一个企业的数据,只有把数据作为资产来认识和管理,大数据项目才能达成预期,也能够治理好。大数据时代带来的价值,个人认为主要有两个,一个是技术架构,主要是架构理念的进步,另外一个更重要的则是对数据的重视。大数据时代是数据的时代,IT向DT转型,不单单是BAT,所有的IT公司,未来都在数据这两个字上。

对于一个企业来说,把数据作为资产,才是建设大数据的最终目的,而不是仅仅是因为Hadoop架构带来性价比和未来的扩展性。当一个企业把数据作为资产,他就像管理自己名下存折、信用卡一样,定期梳理,无时无刻不关心资产的变化情况,关注资产的质量。

而资产目录就是管理资产的形式和手段,他像菜单一样对企业的资产进行梳理、分门别类,提供给使用者;使用者通过菜单,点选自己需要的数据,认可菜单对应的后端处理价值,后厨通过适当的加工,推出相应的数据服务;这是一个标准的流程,而这些流程之上,附着一整套数据管理目标和流程。

大数据平台以数据资产目录为核心,将元数据、数据标准、主数据、数据质量、数据生命周期、数据轮廓等信息在逻辑层面关联起来,在管理层面上整合成统一的整体,构建起数据管理体系,全面的支持数据服务等具体应用。

大数据平台实现了数据存储、清洗和应用。在数据汇入和汇出的过程中,需要对数据的元数据进行统一记录和管理,以利于后续的数据应用和数据血缘分析。数据质量一直是数据集成系统的基础工作,对数据的各个环节设置数据质量检查点,对数据质量进行剖析、评估,以保证后续应用的可信度。

在数据收集的过程中,随着数据维度、指标的聚集,如何找到所需的业务指标及属性,并且评估相关属性的业务及技术细节,需要对收集的所有数据进行业务属性,并进行分类,建立完善的数据资产目录。

数据资产目录是整个大数据平台的数据管理基础,而数据资产目录由于数据的多样性,在使用的过程中,必然涉及数据权限的申请、审批管控流程,而管控流程的建立依赖于相应岗位的设立和对应职责的建立。

大数据平台的数据管理架构规划,通过数据物理集中和数据逻辑整合,彻底摆脱企业“数据竖井”的困境。大数据平台数据管理架构分为功能架构、流向规划和数据架构三个层面。

数据管理功能架构:借鉴DAMA数据管理和DMM数据成熟度理论,着眼于数据管理技术和数据管理流程融合,组织数据管理功能。

数据流向规划架构:规划整个大数据平台的数据流向,并在数据流入、数据整合、数据服务的具体环节实现精细化管理。

数据管理的数据架构:以数据资产目录为核心,数据项为最小管理单元,将技术元数据(实体、属性和关系)、业务元数据和管理元数据(数据标准、主数据、数据质量、数据安全)融合为彼此紧密联系、密不可分的整体,共同构成精细化管理的数据基础。

数据管理在整个大数据平台不仅仅是一个主要功能模块,它还是整个企业层面数据治理的重要组成部分,它是技术和管理流程的融合,也需要合理管控流程框架下组织机构之前的协调合作。如何利用统一的数据管理模块对企业所有进入到数据湖的数据进行有效管控,不单单取决于数据管理模块本身,也取决于元数据的合理采集、维护,组织结构及制度的强力支持保证。

谈大数据时代的数据治理 大数据平台数据管理参照了DAMA对于数据管理的九个管理目标,并进行裁剪,并对部分管理目标进行了合并,并参照了CMMI制定DMM数据成熟度目标,采用循序渐进,逐步完善的策略对管理目标进行分阶段完成,制定完整的管控流程和数据治理规范,以便持续的对数据进行管理,递进实现DMM定义的成熟度目标。

亿信睿治数据治理管理平台和DAMA的对应关系如下:

谈大数据时代的数据治理 大数据平台数据管理的核心内容是数据资产目录,围绕数据资产目录的数据流入、数据整合、数据服务都是数据管理的核心。数据管理主要管理数据的流动,以及管理流动带来的数据变化,并对数据底层的数据结构、数据定义、业务逻辑进行采集和管理,以利于当前和未来的数据使用。为了更好的对数据进行管理和使用,制度层面的建设、流程的设立必不可少,同时也兼顾到数据在流动过程中产生的安全风险和数据隐私风险。

因此数据管理介入到完整的数据流转,并在每个节点都有相应的管理目标对应,整个数据流框架如下图所示:

谈大数据时代的数据治理 企业在建制大数据平台的同时,对进入数据湖的数据进行梳理,并按照数据资产目录的形式对外发布。在发布数据资产之后,则对进出数据湖的数据进行严格的出入库管理,保证数据可信度,并定期进行数据质量剖析检查,确保数据资产完善、安全、可信,避免“不治理便破产”的谶言。

9. 如何实现成功的数据治理

从技术实施角度看,数据治理包含“理”“采”“存”“管”“用”这五个步骤,即业务和数据资源梳理、数据采集清洗、数据库设计和存储、数据管理、数据使用。

数据资源梳理:数据治理的第一个步骤是从业务的视角厘清组织的数据资源环境和数据资源清单,包含组织机构、业务事项、信息系统,以及以数据库、网页、文件和 API 接口形式存在的数据项资源,本步骤的输出物为分门别类的数据资源清单。

数据采集清洗:通过可视化的 ETL 工具将数据从来源端经过抽取 (extract)、转换 (transform)、加载 (load) 至目的端的过程,目的是将散落和零乱的数据集中存储起来。

基础库主题库建设:一般情况下,可以将数据分为基础数据、业务主题数据和分析数据。基础数据一般指的是核心实体数据,或称主数据,例如智慧城市中的人口、法人、地理信息、信用、电子证照等数据。主题数据一般指的是某个业务主题数据,例如市场监督管理局的食品监管、质量监督检查、企业综合监管等数据。而分析数据指的是基于业务主题数据综合分析而得的分析结果数据,例如市场监督管理局的企业综合评价、产业区域分布、高危企业分布等。那么基础库和主题库的建设就是在对业务理解的基础上,基于易存储、易管理、易使用的原则抽像数据存储结构,说白了,就是基于一定的原则设计数据库表结构,然后再根据数据资源清单设计数据采集清洗流程,将整洁干净的数据存储到数据库或数据仓库中。


元数据管理:元数据管理是对基础库和主题库中的数据项属性的管理,同时,将数据项的业务含义与数据项进行了关联,便于业务人员也能够理解数据库中的数据字段含义,并且,元数据是后面提到的自动化数据共享、数据交换和商业智能(BI)的基础。需要注意的是,元数据管理一般是对基础库和主题库中(即核心数据资产)的数据项属性的管理,而数据资源清单是对各类数据来源的数据项的管理。

血缘追踪:数据被业务场景使用时,发现数据错误,数据治理团队需要快速定位数据来源,修复数据错误。那么数据治理团队需要知道业务团队的数据来自于哪个核心库,核心库的数据又来自于哪个数据源头。我们的实践是在元数据和数据资源清单之间建立关联关系,且业务团队使用的数据项由元数据组合配置而来,这样,就建立了数据使用场景与数据源头之间的血缘关系。 数据资源目录:数据资源目录一般应用于数据共享的场景,例如政府部门之间的数据共享,数据资源目录是基于业务场景和行业规范而创建,同时依托于元数据和基础库主题而实现自动化的数据申请和使用。

质量管理:数据价值的成功发掘必须依托于高质量的数据,唯有准确、完整、一致的数据才有使用价值。因此,需要从多维度来分析数据的质量,例如:偏移量、非空检查、值域检查、规范性检查、重复性检查、关联关系检查、离群值检查、波动检查等等。需要注意的是,优秀的数据质量模型的设计必须依赖于对业务的深刻理解,在技术上也推荐使用大数据相关技术来保障检测性能和降低对业务系统的性能影响,例如 Hadoop,MapRece,HBase 等。

商业智能(BI):数据治理的目的是使用,对于一个大型的数据仓库来说,数据使用的场景和需求是多变的,那么可以使用 BI 类的产品快速获取需要的数据,并分析形成报表,像派可数据就属于专业的BI厂商。

数据共享交换:数据共享包括组织内部和组织之间的数据共享,共享方式也分为库表、文件和 API 接口三种共享方式,库表共享比较直接粗暴,文件共享方式通过 ETL 工具做一个反向的数据交换也就可以实现。我们比较推荐的是 API 接口共享方式,在这种方式下,能够让中心数据仓库保留数据所有权,把数据使用权通过 API 接口的形式进行了转移。API 接口共享可以使用 API 网关实现,常见的功能是自动化的接口生成、申请审核、限流、限并发、多用户隔离、调用统计、调用审计、黑白名单、调用监控、质量监控等等。

阅读全文

与怎么实现数据管理相关的资料

热点内容
武汉三菱文具批发市场在哪里 浏览:234
pmma产品用什么保护膜保护 浏览:137
怎么找太阳能预测数据集 浏览:770
爬虫解析数据有什么用 浏览:247
dota2代理商怎么样 浏览:106
市政府办公厅信息处有什么作用 浏览:178
会计信息质量控制变量有哪些 浏览:52
陌生人进来怎么发信息 浏览:824
大窖嘉宾汽水代理有什么弊端 浏览:629
美豆油为什么没交易 浏览:256
交易猫买家验货拒收怎么办 浏览:661
现在菏泽哪个水果批发市场还在开 浏览:540
去医院取耳结石需要什么程序 浏览:431
膏药代理需要什么手续 浏览:365
开个保险代理门店需要什么 浏览:7
创远仪器产品做什么用 浏览:67
产品卖不出去为什么还要涨价 浏览:569
什么是创新型产品 浏览:882
企业管理中企业信息的种类有哪些 浏览:1001
今年资本市场怎么啦 浏览:806