导航:首页 > 数据处理 > 检查spss哪些数据正态分布

检查spss哪些数据正态分布

发布时间:2022-11-30 09:38:45

❶ 如何判断一组数据是不是正态分布能否用SPSS实现操作

可以的,在探索里有正态性检验的选择打钩。

1.输入数据后,左击最上方的Analyze,选择DescriptiveStatistic,选择左击explore,出现如下:

拓展资料

正态分布,也称“常态分布”,又名高斯分布(Gaussian distribution),最早由A.棣莫弗在求二项分布的渐近公式中得到。C.F.高斯在研究测量误差时从另一个角度导出了它。P.S.拉普拉斯和高斯研究了它的性质。是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

❷ spss判断是否符合正态分布

今天和大家分享一下SPSS中判断一组数据是否符合正态分布的几种方法。 以下表为例,需要判断地理成绩的分布是否符合正态分布。 在开始菜单点击“分析”、“频率”,在频率对话框中将地理字段选入选框。 在频率图表选项中勾选“直方图”、“在直方图中显示正态曲线”。 之后可以在输出结果中看到数据分布情况。 我们也可以使用Q-Q 图进行判断。 P-P图判断的操作方法与Q-Q图基本一致。 此外还可以使用K-S检验。 和前面的判断方法不同的是这种方法输出的结果并没有图形展示,我们只需要关注最后的渐近显着性是否大于0.05即可。


偏度和峰度


1、偏度(Skewness):描述数据分布不对称的方向及其程度(见图1)。




当偏度≈0时,可认为分布是对称的,服从正态分布;


当偏度>0时,分布为右偏,即拖尾在右边,峰尖在左边,也称为正偏态;


当偏度<0时,分布为左偏,即拖尾在左边,峰尖在右边,也称为负偏态;


注意:数据分布的左偏或右偏,指的是数值拖尾的方向,而不是峰的位置,容易引起误解。


2、峰度(Kurtosis):描述数据分布形态的陡缓程度(图2)。




当峰度≈0时,可认为分布的峰态合适,服从正态分布(不胖不瘦);


当峰度>0时,分布的峰态陡峭(高尖);


当峰度<0时,分布的峰态平缓(矮胖);


利用偏度和峰度进行正态性检验时,可以同时计算其相应的Z评分(Z-score),即:偏度Z-score=偏度值/标准误,峰度Z-score=峰度值/标准误。在α=0.05的检验水平下,若Z-score在±1.96之间,则可认为资料服从正态分布。


了解偏度和峰度这两个统计量的含义很重要,在对数据进行正态转换时,需要将其作为参考,选择合适的转换方法。


3、SPSS操作方法


以分析某人群BMI的分布特征为例。


(1) 方法一


选择Analyze → Descriptive Statistics → Frequencies


将BMI选入Variable(s)框中 → 点击Statistics → 在Distribution框中勾选Skewness和Kurtosis




(2) 方法二


选择Analyze → Descriptive Statistics → Descriptives


将BMI选入Variable(s)框中 → 点击Options → 在Distribution框中勾选Skewness和Kurtosis




4、结果解读




在结果输出的Descriptives部分,对变量BMI进行了基本的统计描述,同时给出了其分布的偏度值0.194(标准误0.181),Z-score = 0.194/0.181 = 1.072,峰度值0.373(标准误0.360),Z-score = 0.373/0.360 = 1.036。偏度值和峰度值均≈0,Z-score均在±1.96之间,可认为资料服从正态分布。


二、正态性检验:图形判断


1、直方图:表示连续性变量的频数分布,可以用来考察分布是否服从正态分布


(1)选择Graphs → Legacy Diaiogs → Histogram


(2)将BMI选入Variable中,勾选Display normal curve绘制正态曲线




2、P-P图和Q-Q图


(1) P-P图反映了变量的实际累积概率与理论累积概率的符合程度,Q-Q图反映了变量的实际分布与理论分布的符合程度,两者意义相似,都可以用来考察数据资料是否服从某种分布类型。若数据服从正态分布,则数据点应与理论直线(即对角线)基本重合。


(2) SPSS操作:以P-P图为例


选择Analyze → Descriptive Statistics → P-P Plots


将BMI选入Variables中,Test Distribution选择Normal,其他选项默认即可。




三、正态性检验:非参数检验分析法


1、正态性检验属于非参数检验,原假设为“样本来自的总体与正态分布无显着性差异,即符合正态分布”,也就是说P>0.05才能说明资料符合正态分布。


通常正态分布的检验方法有两种,一种是Shapiro-Wilk检验,适用于小样本资料(SPSS规定样本量≤5000),另一种是Kolmogorov–Smirnov检验,适用于大样本资料(SPSS规定样本量>5000)。


2、SPSS操作


(1) 方法一:Kolmogorov–Smirnov检验方法可以通过非参数检验的途径实现


选择Analyze → Nonparametric Tests → Legacy Dialogs → 1-Sample K-S


将BMI选入Test Variable List中,在Test Distribution框中勾选Normal,点击OK完成操作。




(2) 方法二:Explore方法


选择Analyze → Descriptive Statistics → Explore


将BMI选入Dependent List中,点击Plots,勾选Normality plots with tests,在Descriptive框中勾选Histogram,Boxplots选择None,点击OK完成操作。




3、结果解读


(1)在结果输出的Descriptives部分,对变量BMI进行了基本的统计描述,同时给出了其分布的偏度值、峰度值及其标准误,具体意义参照上面介绍的内容。




(2)在结果输出的Tests of Normality部分,给出了Shapiro-Wilk检验及Kolmogorov-Smirnov检验的结果,P值分别为0.200和0.616,在α=0.05的检验水准下,P>0.05,不拒绝原假设,可认为资料服从正态分布。




(3)在结果输出的最后部分,同时给出了直方图和Q-Q图,具体意义参照上面介绍的内容。建议可以直接使用Explore方法,结果中不仅可以输出偏度值,峰度值,绘制直方图,Q-Q图,还可以输出非参数检验的结果,一举多得。


四、注意事项


事实上,Shapiro-Wilk检验及Kolmogorov-Smirnov检验从实用性的角度,远不如图形工具进行直观判断好用。在使用这两种检验方法的时候要注意,当样本量较少的时候,检验结果不够敏感,即使数据分布有一定的偏离也不一定能检验出来;而当样本量较大的时候,检验结果又会太过敏感,只要数据稍微有一点偏离,P值就会<0.05,检验结果倾向于拒绝原假设,认为数据不服从正态分布。所以,如果样本量足够多,即使检验结果P<0.05,数据来自的总体也可能是服从正态分布的。


因此,在实际的应用中,往往会出现这样的情况,明明直方图显示分布很对称,但正态性检验的结果P值却<0.05,拒绝原假设认为不服从正态分布。此时建议大家不要太刻意追求正态性检验的P值,一定要参考直方图、P-P图等图形工具来帮助判断。很多统计学方法,如T检验、方差分析等,与其说要求数据严格服从正态分布,不如说“数据分布不要过于偏态”更为合适。


❸ 请问哪位大神知道spss软件里检验数据是否服从正态分布的Kolmogorov-Smirnov(K-S检验)检验的结果怎么看

表5.2的结果P=0.940,说明数据服从正态分布。表5.4的结果P=0.014,说明原假设被拒绝,数据不服从正态分布。由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。

集中性:正态曲线的高峰位于正中央,即均数所在的位置。

对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。

(3)检查spss哪些数据正态分布扩展阅读:

面积分布:

1、实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同 范围内正态曲线下的面积可用公式计算。

2、正态曲线下,横轴区间(μ-σ,μ+σ)内的面积为68.268949%。

P{|X-μ|<σ}=2Φ(1)-1=0.6826

横轴区间(μ-1.96σ,μ+1.96σ)内的面积为95.449974%。

P{|X-μ|<2σ}=2Φ(2)-1=0.9544

横轴区间(μ-2.58σ,μ+2.58σ)内的面积为99.730020%。

P{|X-μ|<3σ}=2Φ(3)-1=0.9974

由于“小概率事件”和假设检验的基本思想 “小概率事件”通常指发生的概率小于5%的事件,认为在一次试验中该事件是几乎不可能发生的。由此可见X落在(μ-3σ,μ+3σ)以外的概率小于千分之三,在实际问题中常认为相应的事件是不会发生的,基本上可以把区间(μ-3σ,μ+3σ)看作是随机变量X实际可能的取值区间,这称之为正态分布的“3σ”原则。

❹ spss正态分布检验方法是什么

方法如下:

1、首先准备测试数据集,可以通过Excel或者Python等生成数据,本经验提供数据集如下:81.09;81.73;82.38;

注意事项

1、K-S及S-W结果可能不准,建议通过Q-Q图、P-P图等进一步确认。

2、注意数据输入时不要输入错误。

阅读全文

与检查spss哪些数据正态分布相关的资料

热点内容
pmma产品用什么保护膜保护 浏览:137
怎么找太阳能预测数据集 浏览:770
爬虫解析数据有什么用 浏览:247
dota2代理商怎么样 浏览:106
市政府办公厅信息处有什么作用 浏览:178
会计信息质量控制变量有哪些 浏览:52
陌生人进来怎么发信息 浏览:824
大窖嘉宾汽水代理有什么弊端 浏览:629
美豆油为什么没交易 浏览:256
交易猫买家验货拒收怎么办 浏览:661
现在菏泽哪个水果批发市场还在开 浏览:540
去医院取耳结石需要什么程序 浏览:431
膏药代理需要什么手续 浏览:365
开个保险代理门店需要什么 浏览:7
创远仪器产品做什么用 浏览:67
产品卖不出去为什么还要涨价 浏览:569
什么是创新型产品 浏览:882
企业管理中企业信息的种类有哪些 浏览:999
今年资本市场怎么啦 浏览:806
四川省绵阳市区的宠物市场有哪些 浏览:516