Ⅰ 在中国,旅游大数据具有怎样的意义
通过大数据分析,能得到很多宝贵的有用的信息,比如说淡旺季时间,游客来源分析,人员比例,交通方式,消费能力等等,而且大数据分析不光是在旅游行业,其它的很多行业也都在做,可以这么说,通过大数据的分析,作为从业者以及经营者,都会更直观的了解、预测到行业发展的趋势,以及景区的运营,长处,不足等情况。
Ⅱ 教你如何看懂旅游大数据
教你如何看懂旅游大数据_数据分析师考试
有时候,一句话、一张图片都会蕴含巨大的数字商机,但这是一门需要高度精准性的技术活儿,并非人人都看得懂大数据。
看懂游客行为
大家都在说大数据,携程近期投资专攻大数据研究的众荟信息技术有限公司(下称“众荟”)、阿里系的去啊旅行则与石基信息合作,而东呈酒店、如家酒店等也纷纷推出智能化管理。
每个旅游业者都会有自己的会员和消费数据记录,这些记录就是大数据的基础信息,然而在一堆数字和消费者行为面前究竟该如何分析处理并得出结论呢?
“首先要知道什么是大数据,大数据分为两大类,即结构化数据和非结构化数据,前者就是大家看到的一系列数字,后者则可能是一张图、一句话等并非直接体现为数字的信息。因此真正意义上的大数据分析不仅要做直接的数字分析,还要懂得建立数学模型,将非结构化数据转变为结构化数据并得出结论,这些并不简单。”众荟数据智能事业部总经理焦宇告诉记者。
焦宇给记者举了一个例子,现在很多游客会在OTA(在线旅游代理商)上比价和预订酒店,那么其搜索的关键词和浏览痕迹就会体现在OTA的记录里,如果客人浏览过这家酒店的页面却跳转了,并未下订单,则可以通过这个记录分析该客人不下单的原因,当这个客人通过价格、品牌、区域等关键词排序查找酒店信息后,其留下的浏览记录则可以统计出人们是对于价格敏感还是品牌敏感。
“经过研究,大部分人还是看重价格因素,由于价格的选择是有区间的,这就可以用浏览痕迹得出一个最让游客接受的价格区间数字。只有11%的人在意品牌,说明同类酒店可替代性很强。如果以区域关键词搜索,则代表地理位置数据,若可以精准到具体方位,并将这一信息传达给该区域的酒店,则无疑提高了酒店的入住率还能根据消费者行为适当调整房价,当供大于求时下调房价,反之则提升房价。还有一个颇有意思的研究,即游客浏览记录中若有A酒店的竞争对手酒店,则可以推理这个客人对于A这一类酒店有需求,该客人就是A酒店应该关注的潜在客人。”焦宇指出,要将海量的浏览记录变成有效数据,还得依靠数学模型,模型分为收敛型和发散型,大数据通常要经过收敛型模型将非结构化数据转化成结构化数据并得出结论。
一位连锁酒店经营者告诉记者,这些涵盖了消费者较能接受的价格区间、品牌等信息的大数据可以让酒店对价格、定位和营销等做出策略性调整,以提升入住率,提高酒店整体收益管理。
神奇的语言分析
除了价格、品牌,语言文字也是一种非结构化数据,尤其是如今当客人预订酒店旅游产品时一定会先看一下点评,或者自己体验后也会留言评价,这些语言背后也大有大数据学问。
记者多方采访和观察后了解到,不少客人会对已经入住的酒店进行评估,这些点评中经常会出现对酒店环境、客房设施、餐饮和服务的评价,比如“房间很干净,但是送餐服务比较慢”、“前台的服务差评”、“洗浴感受不错”等。这需要用专业的语义分析进行精准细分化分析并转换成结构化数据反馈给酒店经营者。
在人工智能和计算语言学中,语义分析为知识推理和语言提供了方法,也是未来搜索引擎发展的方向。比如,输入“苹果”通过语义分析,能够知道用户想找的是手机而不是水果。
“首先我们会通过专业的语义分析去除一批虚假点评或无实质内容的点评,而将真正对酒店有实质内容的点评留下,并对于每一句话进行断句和多维度切割。举个简单的例子,比如‘这个酒店很干净,但是送餐服务比较慢’,经过我们的断句和多维度切割分析后可以知道客房清洁度不错,但送餐有问题,那么我们接下来就要把结论进行细化分类并反馈给各部门。这里的问题就是速度,有时还涉及口味或者服务态度等。有时一段话的分析是非常复杂的,其中还有纠错比例。”众荟市场部高级副总裁胡凡表示。
从事酒店业超过15年的李先生告诉记者,比起简单的“好”或“不好”,经过多维度语义分析后得出的结论可以反馈到酒店各个相关部门,并且细化到是哪个细节好,或哪个细节有问题需要改进,那么管理层开例会时就能明确知道接下来的工作方向,而经过改善服务态度、速度甚至装饰风格,其所在的酒店入住率提升了10%,且RevPAR(RevenuePerAvailableRoom,每间可供租出客房产生的平均实际营业收入)有约15%的增加。
据悉,一些科技信息公司对于语义分析的维度已经可以达到1000个。
跨界与图片信息怎么玩
有时候,对于旅游大数据的分析还涉及跨界合作。
“国外是跨领域研究的,结合了多领域,比如地理信息、IT、商学院、社会学等。我举个跟踪游客的例子,现在我们采用跨界合作的多方位社交媒体来跟踪游客行为。社交媒体上有很多游客留下的痕迹,比如flickr,flickr上的图片留下了照片的地理坐标、拍摄时间、评论信息等,这些都是非常可贵的旅游大数据。”长期在澳大利亚研究旅游大数据分析的学者程明明告诉记者,用地理坐标来追踪轨迹则需要懂地理学的专家来帮忙,而商业管理方面的专才则可以分析游客去哪儿、是什么时间去等具有商业价值的数据。
在多方跨界分析研究后,业者可以知道哪些景点受欢迎、哪些是新的景点、游客在几点左右在景点甚至每次停留多久等。掌握这些大数据信息分析结果后,相关的旅游业者可以有效做到分流,不会造成景点承载力过于饱和。同时,对比景点信息和游客属性,可以知道不同国家游客对景点有什么不同需求,比如亚洲人是否更喜欢文化景点,如果是,则当地旅游推广营销时就要更多推出人文景点。
记者在采访中获悉,目前中国不少景区也正在与相关大数据分析公司合作,希望通过分析来预测未来一段时间的客流量,尤其是旺季黄金周的客流量预计,能帮助景区控制进入人数,提高安全性和服务质量。
颇有意思的是,图片也属于大数据。
“比如一些大型旅游预订网站上有大量图片,对于图片,我们需要IT技术人员来帮忙进行机器人训练(machinelearning)帮助我们识别不同的图片。比如究竟是人物还是风景效果好,然后我们再通过数学模型和旅游局、旅行社宣传的图片进行对比,得出游客感兴趣的图片和旅游局、旅行社所宣传的是否一致。如果不一致,那么不一致在什么方面,并需要如何改进。”程明明说道。
据悉,另有一种脑电波测试方式,能测试出人们看到图片时眼球第一秒会注视的地方即最吸引点,以及人们对于被测试图片的喜好或厌恶程度等。业者通过这些分析可以决定是否在销售时更换样图,餐厅或景点的宣传图片究竟是有人好还是空景好,合适的样图能够促进销量。
“当然,要做好旅游大数据研究并不简单,其数学模型比较复杂,比如包含线性回归之类的。其实,大数据研究是一个数据不断整合和多学科交叉的过程,未来还有很多商机可以依靠大数据被挖掘出来。”程明明如是说。
以上是小编为大家分享的关于教你如何看懂旅游大数据的相关内容,更多信息可以关注环球青藤分享更多干货
Ⅲ 旅游类UGC数据有哪些对这些数据进行分析研究是否具有价值。
目前常见的分析方法有:
1.高频词分析(有专门的软件,如ROST);
2.情感分析(多用于对旅游目的地形象分析);
3.满意度分析(最近看的一篇文章用KANO模型结合文本做的分析)
4.共词分析(例如分析多篇文章的关键词,使用共词矩阵,社会网络分析等)
4.时空分析(游客路径和时空共现等等,这里面也有很多分析用到的是照片的分析)
注意:文本处理起来很繁琐,特别是有些意义相近的词,全都要进行清洗。
Ⅳ 国庆假期国内游4.22亿人次,旅游收入2872.1亿元,如何解读数据
说明疫情之后,旅游业的收入在逐渐的回升当中。旅游业的收入有所增长,要不断的改革创新,吸引广大的旅游游客,重新塑造旅游市场竞争和产业发展的大格局。
Ⅳ 什么是旅游大数据
“大数据”作为时下最时髦的词汇,开始向各行业渗透辐射,颠覆着很多特别是传统行业的管理和运营思维。在这一大背景下,大数据也触动着旅游行业管理运营者的神经,搅动着旅游行业管理运营者的思维;大数据在旅游行业释放出的巨大价值吸引着诸多旅游行业人士的兴趣和关注。那么,对于旅游行业来说,如何应用数据、应用在哪些方面,大地云游通过本文为您解答。
2017年全国旅游工作会议上,国家旅游局局长李金早在工作报告中指出,“着力加强旅游数据中心建设,提升旅游信息化水平”、“改革旅游统计制度”、“加强国家旅游产业运行监测和应急指挥平台建设”、“持续推动旅游信息化工作”等进行了详细的安排部署。如今的数据已经成为一种重要的战略资产,在未来的商业竞争中占据重要位置。
Ⅵ 国庆前7天超6亿人次出游,如何看待这个数据
这个数据真的是非常的庞大,因为中国总共14亿人口,现在几乎快到一半的人口都可以有条件出去旅游了,这说明居民的生活水平方面正在逐步的提高,而且成效显着,而且从这个数据中,我们也可以看到现在国人他们越来越开始享受生活,喜欢在出行中体会快感。
以上是我个人对国庆期间出门游玩的建议和观,如果大家有不同的观点,可以在评论区底下留言。
Ⅶ 旅游业如何使用数据分析
现在人们的生活水平提高了,于是很多人在闲暇时间会出去旅游。以前的旅游业还是很好做的,因为那时候的人们对于景点不是很挑剔,现在就不一样了,人们对于景点的要求开始变得越来越高,这就使得旅游公司对人们的喜好做出一个调查。怎么做调查呢?做问卷调查是不太可能的,毕竟工作量太大,而且还会花费大量的资金。那么到底应该怎么做呢?人们想到了数据分析,数据分析可以为旅游业提供明晰的决策方向,这样才能够对旅游业有一个指导性的帮助。下面给大家好好普及一下旅游业是如何使用数据分析的。
旅游业使用数据分析也是需要一定的步骤的,这些步骤分别是预测、市场细分、关注竞争者、运营策划等等。在这里分别给大家讲解一下。
首先说预测,旅游业的数据分析的基础就是预测,当然,核心也是预测。我们可以通过数据进行分析以往的时间段中人们的旅游的实际情况,从这些数据中找到规律,这样就能够预测出未来的某个时间段中的旅游情况,然后然后结合市场制定相应的价格策略。那么这个预测,其实就是对市场的一个预期,而价格策略,决定各个市场的定价,从而最大化收益。
其次就是市场细分。旅游业会将很多的项目进行细分的,对于每个细分市场的价格,运作模式,渠道都不尽相同,这就值得我们去进行数据分析,通过分析我们找出合适的方法推出不同的策略。
不管是什么行业,我们都需要关注的是竞争者,当然,旅游业也是这样,我们即使完成了每个月的任务,如果竞争者做的比你好,那么结果也不是很理想的。所以我们需要重视竞争者的动态,这样才能够让自己的企业做的更好。
最后就是运营,运营其实对旅游业的酒店的影响也是非常大的,其实相当于产品。运营的好坏,也会对未来生意有一个非常大的影响。可以通过数据分析进行对企业的诊断,才能够对企业有好处。旅游业的运营也是如此,一个旅游公司的货源,人员管理,售后,客服都能够对公司造成影响。
由此可见,不管是什么行业,都是需要重视数据分析,并做好数据分析。一个数据分析师能够对企业的发展规划做出很好的预测和引导作用,这样才能够对企业有更大的帮助,希望这篇文章能够给大家带来帮助。最后感谢大家的阅读。
Ⅷ 旅游大数据指的是什么
所谓旅游大数据是指旅游行业的从业者及消费者所产生的数据,包括景区、酒店、旅行社、导游、游客、旅游企业等说产生的管理或业务数据,旅游行业等所产生的管理或者业务数据,旅游行业基础资源信息库,互联网数据、旅游宏观经济数据、旅游气象环保数据、交通数据、网络舆情数据等,其中游客的数据最为重要、应用价值最大。
Ⅸ 旅游大数据指的是什么
指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。
大数据包括结构化、半结构化和非结构化数据,非结构化数据越来越成为数据的主要部分。据IDC的调查报告显示:企业中80%的数据都是非结构化数据,这些数据每年都按指数增长。大数据就是互联网发展到现今阶段的一种表象或特征而已,没有必要神话它或对它保持敬畏之心,在以云计算为代表的技术创新大幕的衬托下,这些原本看起来很难收集和使用的数据开始容易被利用起来了,通过各行各业的不断创新,大数据会逐步为人类创造更多的价值。
更多关于旅游大数据指的是什么,进入:https://www.abcgonglue.com/ask/aded181632844502.html?zd查看更多内容
Ⅹ 旅游大数据分析需要哪些数据分析
旅游大数据包含很多,票务数据、闸机、wifi探针、还有现在最先进的手机app位置数据、消费数据、互联网评价数据等,现在很多大场景利用外部数据进行游客的价值挖掘,国内主要基于外部数据做旅游大数据的可以了解一下海鳗云。