导航:首页 > 数据处理 > 如何为大数据分析优化服务器

如何为大数据分析优化服务器

发布时间:2022-11-20 13:45:56

Ⅰ 如何收集和存储服务器运营的数据

如何收集和存储服务器运营的数据
1、大数据的处理 经过长时间的实践和总结,我们发现服务器运营的大数据有以下四个特点,由浅入深,分别是: ...
2、运营系统架构 对于海量服务器的管理,我们建立了一套功能强大的运营分析系统,从服务器的带内和带外收集了全面的静态属性和动态运行数据,对服务器的每个关节进行的全方位的数据采集和监控,犹如我们平时体检,把心、肝、脾、肺、肾,甚至每个毛孔,都进行了检查,系统架构如下图所示:
3、存储和分析 数据收集起来后,除了一部分实时的数据存在本地数据库,几乎全部的历史数据都会存储在公司级的数据平台中,这个数据平台提供了丰富的工具系统,功能全面,涵盖了数据存储、分析、实时计算等。 ...
4、大数据的四个实践
(1)、硬盘故障预测
(2)、服务器利用率分析
(3)、故障率分析
(4)、环境监控

亿万克是研祥高科技控股集团旗下全资子公司。研祥集团作为中国企业500强,持续运营30年。研祥集团全球49个分支机构,三个国家级创新平台,一直致力于技术创新引领行业发展,拥有超1100项授权专利,超1300项非专利核心技术。【感兴趣请点击此处,了解一下。 】

Ⅱ 怎么提高网站从服务器读取数据的速度

现在服务器的配置层出不穷,读取速度成为了重中之重,那我们改怎么样来提高服务器的读取速度呢?下面壹基比小喻来教你们几个方法。

1.使用内存数据库,、

内存数据库,其实就是将数据放在内存中直接操作的数据库。相对于磁盘,内存的数据读写速度要高出几个数量级,将数据保存在内存中相比从磁盘上访问能够极大地提高应用的性能。内存数据库抛弃了磁盘数据管理的传统方式,基于全部数据都在内存中重新设计了体系结构,并且在数据缓存、快速算法、并行操作方面也进行了相应的改进,所以数据处理速度比传统数据库的数据处理速度要快很多。

但是安全性的问题可以说是内存数据库最大的硬伤。因为内存本身有掉电丢失的天然缺陷,因此我们在使用内存数据库的时候,通常需要,提前对内存上的数据采取一些保护机制,比如备份,记录日志,热备或集群,与磁盘数据库同步等方式。对于一些重要性不高但是又想要快速响应用户请求的部分数据可以考虑内存数据库来存储,同时可以定期把数据固化到磁盘。

2.使用RDD

在大数据云计算相关领域的一些应用中,Spark可以用来加快数据处理速度。Spark的核心是RDD,RDD最早来源与Berkeley实验室的一篇论文《Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing》。现有的数据流系统对两种应用的处理并不高效:一是迭代式算法,这在图应用和机器学习领域很常见;二是交互式数据挖掘工具。这两种情况下,将数据保存在内存中能够极大地提高性能。% n( i. u5 O! m;

3.增加缓存

很多web应用是有大量的静态内容,这些静态内容主要都是一些小文件,并且会被频繁的读,采用Apache以及nginx作为web服务器。在web访问量不大的时候,这两个http服务器可以说是非常的迅速和高效,如果负载量很大的时候,我们可以采用在前端搭建cache服务器,将服务器中的静态资源文件缓存到操作系统内存中直接进行读操作,因为直接从内存读取数据的速度要远大于从硬盘读取。这个其实也是增加内存的成本来降低访问磁盘带来的时间消耗。

4.使用SSD

除了对内存方面的优化,还可以对磁盘这边进行优化。跟传统机械硬盘相比,固态硬盘具有快速读写、质量轻、能耗低以及体积小等特点。但是ssd的价格相比传统机械硬盘要贵,有条件的可以使用ssd来代替机械硬盘。/

5.优化数据库)

大部分的服务器请求最终都是要落到数据库中,随着数据量的增加,数据库的访问速度也会越来越慢。想要提升请求处理速度,必须要对原来的单表进行动刀了。目前主流的Linux服务器使用的数据库要属mysql了,如果我们使用mysql存储的数据单个表的记录达到千万级别的话,查询速度会很慢的。根据业务上合适的规则对数据库进行分区分表,可以有效提高数据库的访问速度,提升服务器的整体性能。另外对于业务上查询请求,在建表的时候可以根据相关需求设置索引等,以提高查询速度。

Ⅲ 大数据在医疗行业的运用如何构建大数据服务器以及配置服务器

就我卖过给医院的服务器,设备选择,直接拨打服务器厂家客服,会有专门的客户经理为你选型定制,至于大数据构建,由软件决定,就我见过的,一般统计,医院一段时间内就诊人数,哪一科看病人数最多,什么年龄段,那种病情看病人数多,有些会显示实时人数,比如医护人员有多少人,病床住院有多少人,现在医院进出多少人,及整个医院总人数,

Ⅳ 大数据技术及应用

大数据技术及应用
半个世纪以来,随着计算机技术全面融入社会生活,信息爆炸已经积累到了一个开始引发变革的程度。21世纪是数据信息大发展的时代,移动互联、社交网络、电子商务等极大拓展了互联网的边界和应用范围,各种数据正在迅速膨胀并变大。互联网(社交、搜索、电商)、移动互联网(微博)、物联网(传感器,智慧地球)、车联网、GPS、医学影像、安全监控、金融(银行、股市、保险)、电信(通话、短信)都在疯狂产生着数据。2011年5 月,在“云计算相遇大数据” 为主题的EMC World 2011 会议中,EMC 抛出了Big Data概念。正如《纽约时报》2012年2月的一篇专栏中所称,“大数据”时代已经降临,在商业、经济及其他领域中,决策将日益基于数据和分析而作出,而并非基于经验和直觉。哈佛大学社会学教授加里?金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”
二、什么是大数据
大数据(Big Data)是指那些超过传统数据库系统处理能力的数据。它的数据规模和转输速度要求很高,或者其结构不适合原本的数据库系统。为了获取大数据中的价值,我们必须选择另一种方式来处理它。数据中隐藏着有价值的模式和信息,在以往需要相当的时间和成本才能提取这些信息。如沃尔玛或谷歌这类领先企业都要付高昂的代价才能从大数据中挖掘信息。而当今的各种资源,如硬件、云架构和开源软件使得大数据的处理更为方便和廉价。即使是在车库中创业的公司也可以用较低的价格租用云服务时间了。对于企业组织来讲,大数据的价值体现在两个方面:分析使用和二次开发。对大数据进行分析能揭示隐藏其中的信息。例如零售业中对门店销售、地理和社会信息的分析能提升对客户的理解。对大数据的二次开发则是那些成功的网络公司的长项。例如Facebook通过结合大量用户信息,定制出高度个性化的用户体验,并创造出一种新的广告模式。这种通过大数据创造出新产品和服务的商业行为并非巧合,谷歌、雅虎、亚马逊和Facebook它们都是大数据时代的创新者。
(一)大数据的4V特征
大量化(Volume):企业面临着数据量的大规模增长。例如,IDC最近的报告预测称,到2020年,全球数据量将扩大50倍。目前,大数据的规模尚是一个不断变化的指标,单一数据集的规模范围从几十TB到数PB不等。简而言之,存储1PB数据将需要两万台配备50GB硬盘的个人电脑。此外,各种意想不到的来源都能产生数据。
多样化(Variety):一个普遍观点认为,人们使用互联网搜索是形成数据多样性的主要原因,这一看法部分正确。然而,数据多样性的增加主要是由于新型多结构数据,以及包括网络日志、社交媒体、互联网搜索、手机通话记录及传感器网络等数据类型造成。其中,部分传感器安装在火车、汽车和飞机上,每个传感器都增加了数据的多样性。
快速化(Velocity):高速描述的是数据被创建和移动的速度。在高速网络时代,通过基于实现软件性能优化的高速电脑处理器和服务器,创建实时数据流已成为流行趋势。企业不仅需要了解如何快速创建数据,还必须知道如何快速处理、分析并返回给用户,以满足他们的实时需求。根据IMS Research关于数据创建速度的调查,据预测,到2020年全球将拥有220亿部互联网连接设备。
价值(Value):大量的不相关信息,浪里淘沙却又弥足珍贵。对未来趋势与模式的可预测分析,深度复杂分析(机器学习、人工智能Vs传统商务智能(咨询、报告等)
三、大数据时代对生活、工作的影响
大数据,其影响除了经济方面的,它同时也能在政治、文化等方面产生深远的影响,大数据可以帮助人们开启循“数”管理的模式,也是我们当下“大社会”的集中体现,三分技术,七分数据,得数据者得天下。
“大数据”的影响,增加了对信息管理专家的需求。事实上,大数据的影响并不仅仅限于信息通信产业,而是正在“吞噬”和重构很多传统行业,广泛运用数据分析手段管理和优化运营的公司其实质都是一个数据公司。麦当劳、肯德基以及苹果公司等旗舰专卖店的位置都是建立在数据分析基础之上的精准选址。而在零售业中,数据分析的技术与手段更是得到广泛的应用,传统企业如沃尔玛通过数据挖掘重塑并优化供应链,新崛起的电商如卓越亚马逊、淘宝等则通过对海量数据的掌握和分析,为用户提供更加专业化和个性化的服务。
大数据在个人隐私的方面,大量数据经常含有一些详细的潜在的能够展示有关我们的信息,逐渐引起了我们对个人隐私的担忧。一些处理大数据公司需要认真的对待这个问题。例如美国天睿资讯给人留下比较深刻印象的是他的一个科学家提出,我们不应该简单地服从法律方面的隐私保护问题,这些远远不够的,公司都应该遵从谷歌不作恶的原则,甚至更应该做出更积极的努力。
四、大数据时代的发展方向、趋势
根据ESM国际电子商情针对2013年大数据应用现状和趋势的调查显示:被调查者最关注的大数据技术中,排在前五位的分别是大数据分析(12.91%)、云数据库(11.82%)、Hadoop(11.73%)、内存数据库(11.64%)以及数据安全(9.21%)。Hadoop已不再是人们心目中仅有的大数据技术,而大数据分析成为最被关注的技术。从中可以看出,人们对大数据的了解已经逐渐深入,关注的技术点也越来越多。既然大数据分析是最被关注的技术趋势,那么大数据分析中的哪项功能是最重要的呢?从下图可以看出,排在前三位的功能分别是实时分析(21.32%)、丰富的挖掘模型(17.97%)和可视化界面(15.91%)。2012年也曾做过类似的调查,当时选择丰富的挖掘模型(27.22%)比实时分析(19.88%)多7.34%。短短一年时间内,企业对实时分析的需求激增,成就了很多以实时分析为创新技术的大数据厂商。从调查结果可以看出:企业在未来一两年中有迫切部署大数据的需求,并且已经从一开始的基础设施建设,逐渐发展为对大数据分析和整体大数据解决方案的需求。与此同时,大数据还面临人才的缺乏的挑战,需要企业和高校联合起来,培养数据领域的复合型人才,帮助企业打赢这场“数据战”。
五、大数据的应用
(一)行业拓展者,打造大数据行业基石
IBM:IBM大数据提供的服务包括数据分析,文本分析,蓝色云杉(混搭供电合作的网络平台);业务事件处理;IBM Mashup Center的计量,监测,和商业化服务(MMMS)。 IBM的大数据产品组合中的最新系列产品的InfoSphere bigInsights,基于Apache Hadoop。
该产品组合包括:打包的Apache Hadoop的软件和服务,代号是bigInsights核心,用于开始大数据分析。软件被称为bigsheet,软件目的是帮助从大量数据中轻松、简单、直观的提取、批注相关信息为金融,风险管理,媒体和娱乐等行业量身定做的行业解决方案。
微软:2011年1月与惠普(具体而言是HP数据库综合应用部门) 合作目标是开发了一系列能够提升生产力和提高决策速度的设备。
EMC:EMC 斩获了纽交所和Nasdaq;大数据解决方案已包括40多个产品。
Oracle:Oracle大数据机与Oracle Exalogic中间件云服务器、Oracle Exadata数据库云服务器以及Oracle Exalytics商务智能云服务器一起组成了甲骨文最广泛、高度集成化系统产品组合。
(二)大数据促进了政府职能变革
重视应用大数据技术,盘活各地云计算中心资产:把原来大规模投资产业园、物联网产业园从政绩工程,改造成智慧工程;在安防领域,应用大数据技术,提高应急处置能力和安全防范能力;在民生领域,应用大数据技术,提升服务能力和运作效率,以及个性化的服务,比如医疗、卫生、教育等部门;解决在金融,电信领域等中数据分析的问题:一直得到得极大的重视,但受困于存储能力和计算能力的限制,只局限在交易数型数据的统计分析。一方面大数据的应用促进了政府职能变革,另一方面政府投入将形成示范效应,大大推动大数据的发展。
(三)打造“智慧城市”
美国奥巴马政府在白宫网站发布《大数据研究和发展倡议》,提出“通过收集、处理庞大而复杂的数据信息,从中获得知识和洞见,提升能力,加快科学、工程领域的创新步伐,强化美国国土安全,转变教育和学习模式” ;中国工程院院士邬贺铨说道,“智慧城市是使用智能计算技术使得城市的关键基础设施的组成和服务更智能、互联和有效,随着智慧城市的建设,社会将步入“大数据”时代。”
(四)未来,改变一切
未来,企业会依靠洞悉数据中的信息更加了解自己,也更加了解客户。
数据的再利用:由于在信息价值链中的特殊位置,有些公司可能会收集到大量的数据,但他们并不急需使用也不擅长再次利用这些数据。例如,移动电话运营商手机用户的位置信息来传输电话信号,这对以他们来说,数据只有狭窄的技术用途。但当它被一些发布个性化位置广告服务和促销活动的公司再次利用时,则变得更有价值。
六、机遇和挑战
大数据赋予了我们洞察未来的能力,但同时诸多领域的问题亟待解决,最重要的是每个人的信息都被互联网所记录和保留了下来,并且进行加工和利用,为人所用,而这正是我们所担忧的信息安全隐患!更多的隐私、安全性问题:我们的隐私被二次利用了。多少密码和账号是因为“社交网络”流出去的?
眼下中国互联网热门的话题之一就是互联网实名制问题,我愿意相信这是个好事。毕竟我们如果明着亮出自己的身份,互联网才能对我们的隐私给予更好保护

Ⅳ 大数据分析技术应用领域有哪些

大数据分析应用的十大应用领域!每当我们说到大数据应用分析的时候,很多人都会觉得那是一个庞大的服务器集群,其实大数据应用分析平台开发在人类社会实践中发挥着巨大的优势,它被应用的深度和广度超乎我们的相像,今天小编给大家介绍一下大数据应用分析平台的十大常见应用领域,一起来了解一下吧。
1、了解和定位客户:这是大数据分析应用平台目前最广为人知的应用领域。很多企业热衷于社交媒体数据、浏览器日志、文本挖掘等各类数据集,通过大数据技术创建预测模型,从而更全面地了解客户以及他们的行为、喜好,从而对客户或产品进行定位。
2、了解和优化业务流程:大数据分析应用平台也越来越多地应用于优化业务流程,比如供应链或配送路径优化。通过定位和识别系统来跟踪货物或运输车辆,并根据实时交通路况数据优化运输路线。
3、提供个性化服务:大数据分析应用平台不仅适用于公司和政府,也适用于我们每个人,比如从智能手表或智能手环等可穿戴设备采集的数据中获益。假如:智能手环可以分析人们的卡路里消耗、活动量和睡眠质量等。婚恋网站都使用大数据分析工具和算法为用户匹配最合适的对象等。
4、改善医疗保健和公共卫生:大数据分析应用平台的数据分析的能力可以在几分钟内解码整个DNA序列,有助于我们找到新的治疗方法,更好地理解和预测疾病模式。更重要的是,大数据分析有助于我们监测和预测流行性或传染性疾病的暴发时期,可以将医疗记录的数据与有些社交媒体的数据结合起来分析。
5、提高体育运动技能:如今大多数顶尖的体育赛事都采用了大数据分析技术。可采集并分析运动员在训练之外跟踪运动员的营养和睡眠情况。以及运动场所的状况、天气状况、以及学习期间运动员的个人表现做出最佳决策,以减少球员不必要的受伤。
6、提升科学研究:大数据分析应用带来的无限可能性正在改变科学研究。比如政府需要的人口普查数据、自然灾害数据等,变的更容易获取和分析,从而为我们的健康和社会发展创造更多的价值。
7、提升机械设备性能:大数据分析应用使机械设备更加智能化、自动化。
8、强化安全和执法能力:大数据分析应用在改善安全和执法方面得到了广泛应用。
9、改善城市和国家建设:分析应用被用于改善我们城市和国家的方方面面。目前很多大城市致力于构建智慧交通。车辆、行人、道路基础设施、公共服务场所都被整合在智慧交通网络中,以提升资源运用的效率,优化城市管理和服务。
10、金融交易:分析应用在金融交易领域应用也比较广泛。大多数股票交易都是通过一定的算法模型进行决策的,如今这些算法的输入会考虑来自社交媒体、新闻网络的数据,以便更全面的做出买卖决策。同时根据客户的需求和愿望,这些算法模型也会随着市场的变化而变化。
随着大数据分析应用平台开发成本的降低和人们可接受度的提高,大数据会更加普及到日常生活中,未来将会出现哪些新的应用领域,我们值得期待。

Ⅵ 大数据分析工具有哪些

大数据分析工具有:

1、R-编程

R 编程是对所有人免费的最好的大数据分析工具之一。它是一种领先的统计编程语言,可用于统计分析、科学计算、数据可视化等。R 编程语言还可以扩展自身以执行各种大数据分析操作。

在这个强大的帮助下;语言,数据科学家可以轻松创建统计引擎,根据相关和准确的数据收集提供更好、更精确的数据洞察力。它具有类数据处理和存储。我们还可以在 R 编程中集成其他数据分析工具。

除此之外,您还可以与任何编程语言(例如 Java、C、Python)集成,以提供更快的数据传输和准确的分析。R 提供了大量可用于任何数据集的绘图和图形。

2、Apache Hadoop

Apache Hadoop 是领先的大数据分析工具开源。它是一个软件框架,用于在商品硬件的集群上存储数据和运行应用程序。它是由软件生态系统组成的领先框架。

Hadoop 使用其 Hadoop 分布式文件系统或 HDFS 和 MapRece。它被认为是大数据分析的顶级数据仓库。它具有在数百台廉价服务器上存储和分发大数据集的惊人能力。

这意味着您无需任何额外费用即可执行大数据分析。您还可以根据您的要求向其添加新节点,它永远不会让您失望。

3、MongoDB

MongoDB 是世界领先的数据库软件。它基于 NoSQL 数据库,可用于存储比基于 RDBMS 的数据库软件更多的数据量。MongoDB 功能强大,是最好的大数据分析工具之一。

它使用集合和文档,而不是使用行和列。文档由键值对组成,即MongoDB 中的一个基本数据单元。文档可以包含各种单元。但是大小、内容和字段数量因 MongoDB 中的文档而异。

MongoDB 最好的部分是它允许开发人员更改文档结构。文档结构可以基于程序员在各自的编程语言中定义的类和对象。

MongoDB 有一个内置的数据模型,使程序员能够理想地表示层次关系来存储数组和其他元素。

4、RapidMiner

RapidMiner 是分析师集成数据准备、机器学习、预测模型部署等的领先平台之一。它是最好的免费大数据分析工具,可用于数据分析和文本挖掘。

它是最强大的工具,具有用于分析过程设计的一流图形用户界面。它独立于平台,适用于 Windows、Linux、Unix 和 macOS。它提供各种功能,例如安全控制,在可视化工作流设计器工具的帮助下减少编写冗长代码的需要。

它使用户能够采用大型数据集在 Hadoop 中进行训练。除此之外,它还允许团队协作、集中工作流管理、Hadoop 模拟等。

它还组装请求并重用 Spark 容器以对流程进行智能优化。RapidMiner有五种数据分析产品,即RapidMiner Studio Auto Model、Auto Model、RapidMiner Turbo Prep、RapidMiner Server和RapidMiner Radoop。

5、Apache Spark

Apache Spark 是最好、最强大的开源大数据分析工具之一。借助其数据处理框架,它可以处理大量数据集。通过结合或其他分布式计算工具,在多台计算机上分发数据处理任务非常容易。

它具有用于流式 SQL、机器学习和图形处理支持的内置功能。它还使该站点成为大数据转换的最快速和通用的生成器。我们可以在内存中以快 100 倍的速度处理数据,而在磁盘中则快 10 倍。

除此之外,它还拥有 80 个高级算子,可以更快地构建并行应用程序。它还提供 Java 中的高级 API。该平台还提供了极大的灵活性和多功能性,因为它适用于不同的数据存储,如 HDFS、Openstack 和 Apache Cassandra。

6、Microsoft Azure

Microsoft Azure 是领先的大数据分析工具之一。Microsoft Azure 也称为 Windows Azure。它是 Microsoft 处理的公共云计算平台,是提供包括计算、分析、存储和网络在内的广泛服务的领先平台。

Windows Azure 提供两类标准和高级的大数据云产品。它可以无缝处理大量数据工作负载。

除此之外,Microsoft Azure 还拥有一流的分析能力和行业领先的 SLA 以及企业级安全和监控。它也是开发人员和数据科学家的最佳和高效平台。它提供了在最先进的应用程序中很容易制作的实时数据。

无需 IT 基础架构或虚拟服务器进行处理。它可以轻松嵌入其他编程语言,如 JavaScript 和 C#。

7、Zoho Analytics

Zoho Analytics 是最可靠的大数据分析工具之一。它是一种 BI 工具,可以无缝地用于数据分析,并帮助我们直观地分析数据以更好地理解原始数据。

同样,任何其他分析工具都允许我们集成多个数据源,例如业务应用程序、数据库软件、云存储、CRM 等等。我们还可以在方便时自定义报告,因为它允许我们生成动态且高度自定义的可操作报告。

在 Zoho 分析中上传数据也非常灵活和容易。我们还可以在其中创建自定义仪表板,因为它易于部署和实施。世界各地的用户广泛使用该平台。此外,它还使我们能够在应用程序中生成评论威胁,以促进员工和团队之间的协作。

它是最好的大数据分析工具,与上述任何其他工具相比,它需要的知识和培训更少。因此,它是初创企业和入门级企业的最佳选择。

以上内容参考 网络——大数据分析

Ⅶ 如何打造高性能大数据分析平台

大数据分析系统作为一个关键性的系统在各个公司迅速崛起。但是这种海量规模的数据带来了前所未有的性能挑战。同时,如果大数据分析系统无法在第一时间为运营决策提供关键数据,那么这样的大数据分析系统一文不值。本文将从技术无关的角度讨论一些提高性能的方法。下面我们将讨论一些能够应用在大数据分析系统不同阶段的技巧和准则(例如数据提取,数据清洗,处理,存储,以及介绍)。本文应作为一个通用准则,以确保最终的大数据分析平台能满足性能要求。

1. 大数据是什么?

大数据是最近IT界最常用的术语之一。然而对大数据的定义也不尽相同,所有已知的论点例如结构化的和非结构化、大规模的数据等等都不够完整。大数据系统通常被认为具有数据的五个主要特征,通常称为数据的5 Vs。分别是大规模,多样性,高效性、准确性和价值性。
互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果真的想做,可以来这里,这个手技的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,想说的是,除非想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了。

据Gartner称,大规模可以被定义为“在本(地)机数据采集和处理技术能力不足以为用户带来商业价值。当现有的技术能够针对性的进行改造后来处理这种规模的数据就可以说是一个成功的大数据解决方案。

这种大规模的数据没将不仅仅是来自于现有的数据源,同时也会来自于一些新兴的数据源,例如常规(手持、工业)设备,日志,汽车等,当然包括结构化的和非结构化的数据。

据Gartner称,多样性可以定义如下:“高度变异的信息资产,在生产和消费时不进行严格定义的包括多种形式、类型和结构的组合。同时还包括以前的历史数据,由于技术的变革历史数据同样也成为多样性数据之一 “。

高效性可以被定义为来自不同源的数据到达的速度。从各种设备,传感器和其他有组织和无组织的数据流都在不断进入IT系统。由此,实时分析和对于该数据的解释(展示)的能力也应该随之增加。

根据Gartner,高效性可以被定义如下:“高速的数据流I/O(生产和消费),但主要聚焦在一个数据集内或多个数据集之间的数据生产的速率可变上”。

准确性,或真实性或叫做精度是数据的另一个重要组成方面。要做出正确的商业决策,当务之急是在数据上进行的所有分析必须是正确和准确(精确)的。

大数据系统可以提供巨大的商业价值。像电信,金融,电子商务,社交媒体等,已经认识到他们的数据是一个潜在的巨大的商机。他们可以预测用户行为,并推荐相关产品,提供危险交易预警服务,等等。

与其他IT系统一样,性能是大数据系统获得成功的关键。本文的中心主旨是要说明如何让大数据系统保证其性能。

2. 大数据系统应包含的功能模块

大数据系统应该包含的功能模块,首先是能够从多种数据源获取数据的功能,数据的预处理(例如,清洗,验证等),存储数据,数据处理、数据分析等(例如做预测分析??,生成在线使用建议等等),最后呈现和可视化的总结、汇总结果。

下图描述了大数据系统的这些高层次的组件

描述本节的其余部分简要说明了每个组分,如图1。

2.1 各种各样的数据源当今的IT生态系统,需要对各种不同种类来源的数据进行分析。这些来源可能是从在线Web应用程序,批量上传或feed,流媒体直播数据,来自工业、手持、家居传感的任何东西等等。

显然从不同数据源获取的数据具有不同的格式、使用不同的协议。例如,在线的Web应用程序可能会使用SOAP / XML格式通过HTTP发送数据,feed可能会来自于CSV文件,其他设备则可能使用MQTT通信协议。

由于这些单独的系统的性能是不在大数据系统的控制范围之内,并且通常这些系统都是外部应用程序,由第三方供应商或团队提供并维护,所以本文将不会在深入到这些系统的性能分析中去。

2.2 数据采集第一步,获取数据。这个过程包括分析,验证,清洗,转换,去重,然后存到适合你们公司的一个持久化设备中(硬盘、存储、云等)。

在下面的章节中,本文将重点介绍一些关于如何获取数据方面的非常重要的技巧。请注意,本文将不讨论各种数据采集技术的优缺点。

2.3 存储数据第二步,一旦数据进入大数据系统,清洗,并转化为所需格式时,这些过程都将在数据存储到一个合适的持久化层中进行。

在下面的章节中,本文将介绍一些存储方面的最佳实践(包括逻辑上和物理上)。在本文结尾也会讨论一部分涉及数据安全方面的问题。

2.4 数据处理和分析第三步,在这一阶段中的一部分干净数据是去规范化的,包括对一些相关的数据集的数据进行一些排序,在规定的时间间隔内进行数据结果归集,执行机器学习算法,预测分析等。

在下面的章节中,本文将针对大数据系统性能优化介绍一些进行数据处理和分析的最佳实践。

2.5 数据的可视化和数据展示最后一个步骤,展示经过各个不同分析算法处理过的数据结果。该步骤包括从预先计算汇总的结果(或其他类似数据集)中的读取和用一种友好界面或者表格(图表等等)的形式展示出来。这样便于对于数据分析结果的理解。

3. 数据采集中的性能技巧

数据采集是各种来自不同数据源的数据进入大数据系统的第一步。这个步骤的性能将会直接决定在一个给定的时间段内大数据系统能够处理的数据量的能力。

数据采集??过程基于对该系统的个性化需求,但一些常用执行的步骤是 - 解析传入数据,做必要的验证,数据清晰,例如数据去重,转换格式,并将其存储到某种持久层。

涉及数据采集过程的逻辑步骤示如下图所示:

下面是一些性能方面的技巧:

来自不同数据源的传输应该是异步的。可以使用文件来传输、或者使用面向消息的(MoM)中间件来实现。由于数据异步传输,所以数据采集过程的吞吐量可以大大高于大数据系统的处理能力。 异步数据传输同样可以在大数据系统和不同的数据源之间进行解耦。大数据基础架构设计使得其很容易进行动态伸缩,数据采集的峰值流量对于大数据系统来说算是安全的。

如果数据是直接从一些外部数据库中抽取的,确保拉取数据是使用批量的方式。

如果数据是从feed file解析,请务必使用合适的解析器。例如,如果从一个XML文件中读取也有不同的解析器像JDOM,SAX,DOM等。类似地,对于CSV,JSON和其它这样的格式,多个解析器和API是可供选择。选择能够符合需求的性能最好的。

优先使用内置的验证解决方案。大多数解析/验证工作流程的通常运行在服务器环境(ESB /应用服务器)中。大部分的场景基本上都有现成的标准校验工具。在大多数的情况下,这些标准的现成的工具一般来说要比你自己开发的工具性能要好很多。

类似地,如果数据XML格式的,优先使用XML(XSD)用于验证。

即使解析器或者校等流程使用自定义的脚本来完成,例如使用java优先还是应该使用内置的函数库或者开发框架。在大多数的情况下通常会比你开发任何自定义代码快得多。

尽量提前滤掉无效数据,以便后续的处理流程都不用在无效数据上浪费过多的计算能力。

大多数系统处理无效数据的做法通常是存放在一个专门的表中,请在系统建设之初考虑这部分的数据库存储和其他额外的存储开销。

如果来自数据源的数据需要清洗,例如去掉一些不需要的信息,尽量保持所有数据源的抽取程序版本一致,确保一次处理的是一个大批量的数据,而不是一条记录一条记录的来处理。一般来说数据清洗需要进行表关联。数据清洗中需要用到的静态数据关联一次,并且一次处理一个很大的批量就能够大幅提高数据处理效率。

数据去重非常重要这个过程决定了主键的是由哪些字段构成。通常主键都是时间戳或者id等可以追加的类型。一般情况下,每条记录都可能根据主键进行索引来更新,所以最好能够让主键简单一些,以保证在更新的时候检索的性能。

来自多个源接收的数据可以是不同的格式。有时,需要进行数据移植,使接收到的数据从多种格式转化成一种或一组标准格式。

和解析过程一样,我们建议使用内置的工具,相比于你自己从零开发的工具性能会提高很多。

数据移植的过程一般是数据处理过程中最复杂、最紧急、消耗资源最多的一步。因此,确保在这一过程中尽可能多的使用并行计算。

一旦所有的数据采集的上述活动完成后,转换后的数据通常存储在某些持久层,以便以后分析处理,综述,聚合等使用。

多种技术解决方案的存在是为了处理这种持久(RDBMS,NoSQL的分布式文件系统,如Hadoop和等)。

谨慎选择一个能够最大限度的满足需求的解决方案。

4. 数据存储中的性能技巧

一旦所有的数据采集步骤完成后,数据将进入持久层。

在本节中将讨论一些与数据数据存储性能相关的技巧包括物理存储优化和逻辑存储结构(数据模型)。这些技巧适用于所有的数据处理过程,无论是一些解析函数生的或最终输出的数据还是预计算的汇总数据等。

首先选择数据范式。您对数据的建模方式对性能有直接的影响,例如像数据冗余,磁盘存储容量等方面。对于一些简单的文件导入数据库中的场景,你也许需要保持数据原始的格式,对于另外一些场景,如执行一些分析计算聚集等,你可能不需要将数据范式化。

大多数的大数据系统使用NoSQL数据库替代RDBMS处理数据。

不同的NoSQL数据库适用不同的场景,一部分在select时性能更好,有些是在插入或者更新性能更好。

数据库分为行存储和列存储。

具体的数据库选型依赖于你的具体需求(例如,你的应用程序的数据库读写比)。

同样每个数据库都会根据不同的配置从而控制这些数据库用于数据库复制备份或者严格保持数据一致性?这些设置会直接影响数据库性能。在数据库技术选型前一定要注意。

压缩率、缓冲池、超时的大小,和缓存的对于不同的NoSQL数据库来说配置都是不同的,同时对数据库性能的影响也是不一样的。

数据Sharding和分区是这些数据库的另一个非常重要的功能。数据Sharding的方式能够对系统的性能产生巨大的影响,所以在数据Sharding和分区时请谨慎选择。

并非所有的NoSQL数据库都内置了支持连接,排序,汇总,过滤器,索引等。

如果有需要还是建议使用内置的类似功能,因为自己开发的还是不灵。

NoSQLs内置了压缩、编解码器和数据移植工具。如果这些可以满足您的部分需求,那么优先选择使用这些内置的功能。这些工具可以执行各种各样的任务,如格式转换、压缩数据等,使用内置的工具不仅能够带来更好的性能还可以降低网络的使用率。

许多NoSQL数据库支持多种类型的文件系统。其中包括本地文件系统,分布式文件系统,甚至基于云的存储解决方案。

如果在交互式需求上有严格的要求,否则还是尽量尝试使用NoSQL本地(内置)文件系统(例如HBase 使用HDFS)。

这是因为,如果使用一些外部文件系统/格式,则需要对数据进行相应的编解码/数据移植。它将在整个读/写过程中增加原本不必要的冗余处理。

大数据系统的数据模型一般来说需要根据需求用例来综合设计。与此形成鲜明对比的是RDMBS数据建模技术基本都是设计成为一个通用的模型,用外键和表之间的关系用来描述数据实体与现实世界之间的交互。

在硬件一级,本地RAID模式也许不太适用。请考虑使用SAN存储。

5. 数据处理分析中的性能技巧

数据处理和分析是一个大数据系统的核心。像聚合,预测,聚集,和其它这样的逻辑操作都需要在这一步完成。

本节讨论一些数据处理性能方面的技巧。需要注意的是大数据系统架构有两个组成部分,实时数据流处理和批量数据处理。本节涵盖数据处理的各个方面。

在细节评估和数据格式和模型后选择适当的数据处理框架。

其中一些框架适用于批量数据处理,而另外一些适用于实时数据处理。

同样一些框架使用内存模式,另外一些是基于磁盘io处理模式。

有些框架擅长高度并行计算,这样能够大大提高数据效率。

基于内存的框架性能明显优于基于磁盘io的框架,但是同时成本也可想而知。

概括地说,当务之急是选择一个能够满足需求的框架。否则就有可能既无法满足功能需求也无法满足非功能需求,当然也包括性能需求。

一些这些框架将数据划分成较小的块。这些小数据块由各个作业独立处理。协调器管理所有这些独立的子作业?在数据分块是需要当心。

该数据快越小,就会产生越多的作业,这样就会增加系统初始化作业和清理作业的负担。

如果数据快太大,数据传输可能需要很长时间才能完成。这也可能导致资源利用不均衡,长时间在一台服务器上运行一个大作业,而其他服务器就会等待。

不要忘了查看一个任务的作业总数。在必要时调整这个参数。

最好实时监控数据块的传输。在本机机型io的效率会更高,这么做也会带来一个副作用就是需要将数据块的冗余参数提高(一般hadoop默认是3份)这样又会反作用使得系统性能下降。

此外,实时数据流需要与批量数据处理的结果进行合并。设计系统时尽量减少对其他作业的影响。

大多数情况下同一数据集需要经过多次计算。这种情况可能是由于数据抓取等初始步骤就有报错,或者某些业务流程发生变化,值得一提的是旧数据也是如此。设计系统时需要注意这个地方的容错。

这意味着你可能需要存储原始数据的时间较长,因此需要更多的存储。

数据结果输出后应该保存成用户期望看到的格式。例如,如果最终的结果是用户要求按照每周的时间序列汇总输出,那么你就要将结果以周为单位进行汇总保存。

为了达到这个目标,大数据系统的数据库建模就要在满足用例的前提下进行。例如,大数据系统经常会输出一些结构化的数据表,这样在展示输出上就有很大的优势。

更常见的是,这可能会这将会让用户感觉到性能问题。例如用户只需要上周的数据汇总结果,如果在数据规模较大的时候按照每周来汇总数据,这样就会大大降低数据处理能力。

一些框架提供了大数据查询懒评价功能。在数据没有在其他地方被使用时效果不错。

实时监控系统的性能,这样能够帮助你预估作业的完成时间。

6. 数据可视化和展示中的性能技巧

精心设计的高性能大数据系统通过对数据的深入分析,能够提供有价值战略指导。这就是可视化的用武之地。良好的可视化帮助用户获取数据的多维度透视视图。

需要注意的是传统的BI和报告工具,或用于构建自定义报表系统无法大规模扩展满足大数据系统的可视化需求。同时,许多COTS可视化工具现已上市。

本文将不会对这些个别工具如何进行调节,而是聚焦在一些通用的技术,帮助您能打造可视化层。

确保可视化层显示的数据都是从最后的汇总输出表中取得的数据。这些总结表可以根据时间短进行汇总,建议使用分类或者用例进行汇总。这么做可以避免直接从可视化层读取整个原始数据。

这不仅最大限度地减少数据传输,而且当用户在线查看在报告时还有助于避免性能卡顿问题。

重分利用大化可视化工具的缓存。缓存可以对可视化层的整体性能产生非常不错的影响。

物化视图是可以提高性能的另一个重要的技术。

大部分可视化工具允许通过增加线程数来提高请求响应的速度。如果资源足够、访问量较大那么这是提高系统性能的好办法。

尽量提前将数据进行预处理,如果一些数据必须在运行时计算请将运行时计算简化到最小。

可视化工具可以按照各种各样的展示方法对应不同的读取策略。其中一些是离线模式、提取模式或者在线连接模式。每种服务模式都是针对不同场景设计的。

同样,一些工具可以进行增量数据同步。这最大限度地减少了数据传输,并将整个可视化过程固化下来。

保持像图形,图表等使用最小的尺寸。

大多数可视化框架和工具的使用可缩放矢量图形(SVG)。使用SVG复杂的布局可能会产生严重的性能影响。

7. 数据安全以及对于性能的影响

像任何IT系统一样安全性要求也对大数据系统的性能有很大的影响。在本节中,我们讨论一下安全对大数据平台性能的影响。

- 首先确保所有的数据源都是经过认证的。即使所有的数据源都是安全的,并且没有针对安全方面的需求,那么你可以灵活设计一个安全模块来配置实现。

- 数据进过一次认证,那么就不要进行二次认证。如果实在需要进行二次认证,那么使用一些类似于token的技术保存下来以便后续继续使用。这将节省数据一遍遍认证的开销。

- 您可能需要支持其他的认证方式,例如基于PKI解决方案或Kerberos。每一个都有不同的性能指标,在最终方案确定前需要将其考虑进去。

- 通常情况下数据压缩后进入大数据处理系统。这么做好处非常明显不细说。

- 针对不同算法的效率、对cpu的使用量你需要进行比较来选出一个传输量、cpu使用量等方面均衡的压缩算法。

- 同样,评估加密逻辑和算法,然后再选择。

- 明智的做法是敏感信息始终进行限制。

- 在审计跟踪表或登录时您可能需要维护记录或类似的访问,更新等不同的活动记录。这可能需要根据不同的监管策略和用户需求个性化的进行设计和修改。

- 注意,这种需求不仅增加了数据处理的复杂度,但会增加存储成本。

- 尽量使用下层提供的安全技术,例如操作系统、数据库等。这些安全解决方案会比你自己设计开发性能要好很多。

8. 总结

本文介绍了各种性能方面的技巧,这些技术性的知道可以作为打造大数据分析平台的一般准则。大数据分析平台非常复杂,为了满足这种类型系统的性能需求,需要我们从开始建设的时候进行考量。

本文介绍的技术准则可以用在大数据平台建设的各个不同阶段,包括安全如何影响大数据分析平台的性能。

Ⅷ 金融大数据分析的数据分流应用

金融大数据分析的数据分流应用
随着金融大数据技术应用,以及相关业务大数据应用不断创新,金融机构的数据分析和业务创新,以及数据安全如何深度融合,是当前金融机构信息化面临的重要挑战。
银监会印发《银行业金融机构信息系统风险管理指引 》(2006年),其中第二十七条:银行业金融机构应加强数据采集、存贮、传输、使用、备份、恢复、抽检、清理、销毁等环节的有效管理,不得脱离系统采集加工、传输、存取数据;优化系统和数据库安全设置,严格按授权使用系统和数据库,采用适当的数据加密技术以保护敏感数据的传输和存取,保证数据的完整性、保密性。
银监会印发《银行业金融机构全面风险管理指引》(银监发〔2016〕44号),其中第四十三条:银行业金融机构应当建立与业务规模、风险状况等相匹配的信息科技基础设施;第四十四条银行业金融机构应当建立健全数据质量控制机制,积累真实、准确、连续、完整的内部和外部数据,用于风险识别、计量、评估、监测、报告,以及资本和流动性充足情况的评估。
从银监会的两次下发指引文件要求中,我们可以看到,针对金融行业的数据分析,相对传统行业,在数据的采集、存储和处理过程中,在数据安全性、完整性、业务管理全面性上,有着更为严格的要求。
那在金融大数据技术应用领域,如何更高效、安全的实现金融业务数据的精细化采集管理,是其中一个细分的技术领域,也是我们今天探讨的话题。
金融业务大数据的采集管理技术需求
金融行业的信息化在众多异构系统和DT环境中,越来越重视可视化和业务关联性,在互联网化金融交易和大数据技术应用的背景下,相关数据采集、分析的技术需求演进出现了新的变化,那就是分别是分流调度管理技术和业务可视化技术。
可视化分析业务,需要采集、分析不同类别的数据,如基础数据,日志数据,安全数据或特定业务数据,因此需要分门别类进行分类调度。专业的分析应用需要专业的设备和系统配合。
比如风险监管日趋严谨,每家金融机构对贷前风控、贷后风险管理的重视空前提高。而通过信息化手段实现风控能力上,数据准确完整,算法和模型是风控部署的核心。
现在的金融机构IT架构大多分为在线系统、近线系统与离线系统。在线系统主要面向最终用户的交易请求;近线系统则针对一段时间内的历史数据进行存放和进行溯源查询;而离线系统则对历史时间的数据进行归档,在特殊情况下会被恢复进行使用。
随着大数据技术的蓬勃发展,金融机构对全量历史数据的认知有新的变化。如何从历史数据中挖掘其潜在价值,如何将离线数据在线化以满足监管部门的需求,是很多银行开始利用大数据技术解决的问题。
例如征信,银行已经能够获取社会各类有意义的信息进行记录,例如网上的各地各楼盘的房价、人行征信、法院执行纪录、工商局信息、企业上下游现金流等信息,然后通过这种信息对个人企业进行分析对比,对超常理的数据进行风险警告,便于审计人员快速判断识别潜在风险。
又比如客户的POS刷卡记录,企业上下游流水账单,交税信息等等,整个可对企业进行现金流测算。又或者对客户信用卡还款时间,转账时间等等来判断客户手中现金或者回款时间,把推荐的理财营销时间推送给其客户经理等,实现真正的精准营销。
总体来说,金融现有的业务需要把数据的有效分析和灵活应用到金融体系中去,而非空谈大数据应用。
那在大数据业务分析、内容安全审计和业务应用可视化的应用中,面临最核心问题,那就是如何把业务流量正确、按需的方式传递给所需的数据分析系统。笔者认为需要专业的业务流数据管理系统才能够精准的识别、分类和分发传递。
比如很多运维日志数据是通过UDP 514传递的,那日志服务器不需要接受其他内容,针对性采集即可。如交易或征信业务只需要采集数据库的Mysql TCP 3306 和Oracle TCP 1521端口往返数据,那分析系统也可降低性能负载,摘取所需数据是当前数据分析的必要措施。
另外不得不说的是流量不少是无用的数据载荷。而常见的分析系统平台大多为千兆速率,那么网络单接口流量在万兆或更高流量时候,是增强系统分析系统的硬件配置还是通过数据裁剪方式来部署,那选择显而易见是裁剪优化而不是升级分析平台的硬件平台,因为那将是更高昂的硬件摊销成本。
比如交易数据或征信数据等,可以进行剥离掉帧头帧尾和部分封装协议。数据分析服务器(比如性能分析类)吞吐量较低,无法承载大流量分析能力,需要将分发流量进行载荷截短,降低数据流量带宽,提升服务器分析效率。
金融大数据采集分析应用建议使用专业分流技术
上述的金融业务可视化分析以及IT系统环境运维过程中问题,是我们常见的数据采集、归类、提取再分发分析的技术需求和环境。
因此在金融大数据识别、分类采集、分发存储等应用方面建议使用专业数据分流技术,因为其系统的精细化数据流管理功能为相关业务应用提供专业能力的保障,而这个数据分流应用并已在诸多的行业的运维和业务应用可视化领域成熟应用。

阅读全文

与如何为大数据分析优化服务器相关的资料

热点内容
北京有什么事业单位招聘的信息 浏览:492
车床程序启动不了怎么回事 浏览:292
为什么有交易系统还不能盈利 浏览:683
教师口语的技术技巧有哪些 浏览:477
现货交易一千块能赚多少 浏览:464
现在学个什么技术不错 浏览:104
一个产品多种状态怎么体现 浏览:990
巧人秀产品如何 浏览:368
泰尔制药的产品有哪些 浏览:428
北京果蔬消毒器代理商有哪些 浏览:786
it技术教育哪里好 浏览:849
资质和信用信息系统怎么下载 浏览:405
如何做一个物流信息部 浏览:873
审核中的小程序在哪里 浏览:399
友爱职业技术学院多少个班 浏览:515
代理商是怎么工作的 浏览:638
哪里能查业主信息 浏览:271
程序员吃什么提升自己 浏览:295
产品和仪器如何选择 浏览:775
代理权授予范围及方式有哪些 浏览:104