导航:首页 > 数据处理 > 数据治理这一词什么时候开始出现

数据治理这一词什么时候开始出现

发布时间:2022-11-17 20:30:11

A. 什么是数据治理

数据治理是指从使用零散数据变为使用统一主数据、从具有很少或没有组织和流程治理到企业范围内的综合数据治理、从尝试处理主数据混乱状况到主数据井井有条的一个过程。
数据治理的全过程
数据治理其实是一种体系,是一个关注于信息系统执行层面的体系,这一体系的目的是整合IT与业务部门的知识和意见,通过一个类似于监督委员会或项目小组的虚拟组织对企业的信息化建设进行全方位的监管,这一组织的基础是企业高层的授权和业务部门与IT部门的建设性合作。从范围来讲,数据治理涵盖了从前端事务处理系统、后端业务数据库到终端的数据分析,从源头到终端再回到源头形成一个闭环负反馈系统(控制理论中趋稳的系统)。从目的来讲,数据治理就是要对数据的获取、处理、使用进行监管(监管就是我们在执行层面对信息系统的负反馈),而监管的职能主要通过以下五个方面的执行力来保证——发现、监督、控制、沟通、整合

B. 数据治理的概念、难点和最佳实践方法

从信息化到数字化,我们见证了互联网对社会和个人的深刻影响。随着新技术、新理念的不断推出,数字化转型则在这两年强势兴起,逐渐改变着企业和市场的格局。而数据正驱动业务转型、组织变革。企业由信息化向数字化转型,是顺应大势,顺势而为才能借东风之势。

数字化转型的目的和核心是数据赋能业务,通过智能数据归一、数据统一治理与服务、数据实体化融合、数据资产化的方式,帮助实现业务转型、创新和增长。而我们的基石就是高质量数据。

一、数据治理的概念是什么?

数据治理(Data Governance)是组织中涉及数据使用的一整套管理行为。由企业数据治理部门发起并推行,关于如何制定和实施针对整个企业内部数据的商业应用和技术管理的一系列政策和流程。

国际数据管理协会给出的定义:数据治理是对数据资产管理行使权力和控制的活动集合。

用3W来解释:

WHO:面向董事会治理层、高管层的标准、任何类型的组织

WHAT:通过一系列原则,指导当前和将来使用的创建、收集、存储、分发、共享的数据,并依赖数据决策,影响相关管理过程。发挥数据价值、减少数据风险

WHY:良好的数据治理有助于领导层确保数据在整个组织通过以下方面对组织的绩效作出积极的贡献

二、数据治理能解决什么问题?

政府、企业想要释放数据的强大力量,必须提供准确、可靠、及时的数据。睿治帮助政府和企业有效管理数据,以避免因数据价值得不到很好体现而对政府和企业造成负面影响,进而帮助企业提高竞争力,为政府和企业提供更优质、更及时、更完整的数据,让其在政务管理和经营市场中脱颖而出。

制定统一标准:帮助政府和企业建设数据标准,制定统一标准

挖掘数据价值:帮助企业和政府梳理资源,形成数据资产,丰富分析应用全面掌控数据来龙去脉,以获得更多的数据洞察力,进而挖掘出隐藏在资源中的价值。

控数据质量:帮助企业和政府建立数据质量管理体系,对数据质量实时监控,及时整改,全面提升政府和企业数据的完整性、准确性、及时性,减少因数据不可靠导致的决策偏差攻损失。

提升信息服务水准:帮助政府和企业制定相关流程、政策、标准,保证信息的可用性、可获取性、优质性、一致性以及安全性,提升信息服务水准。

降低数据安全风险:提升政府和企业数据资产安全性,并帮助建立相关安全规范和响应机制,全面保障其数据安全

数据治理最佳实践路径。

三、数据治理的实践方法

数据治理是一个长期的过程,涉及到企业中所有跨功能和跨业务的决策机制。业界也有这么一个说法:数据治理即是管理问题,也是技术问题。

在管理角度,数据治理是一个至上而下的过程,需要企业高层从全局角度出发制定战略规划,规范数据从业务输入到战略管理过程的全流程治理;

在技术落地层面,需要自下向上推进,从实际内容来看,数据治理是一套工具集。目前业界还缺乏通用、有效的数据融合治理与数据质量管理的工具。

俗话说,工欲善其事,必先利其器。亿信华辰基于以上视角,结合十几年大数据技术经验,打造了智能数据治理平台——睿治,去帮助企业规范的定义与加工数据、清晰的管理数据、安全的应用数据。

睿治数据治理平台是一套完善、通用的的数据治理工具,融合数据集成、数据交换、实时计算存储、元数据管理、数据标准管理、数据质量管理、主数据管理、数据资产管理、数据安全管理、数据生命周期管理十大产品模块,可帮助企业实现数据的融合治理与数据质量管理。

睿治平台十大功能模块可基于政企用户不尽相同的发展现状,选择性组合使用,快速匹配数据治理的各类场景应用,突破数据治理的技术基础门槛。

C. 数据治理的定义,有谁知道

数据治理就是在明确责任的前提下,发挥数据的有效性和提升业务价值而采用的一系列业务、技术和管理相结合的活动。

D. 数据治理的定义和架构

      数据治理的定义

     数据治理(DataGovernance),是企业数据治理部门发起并推行的,关于如何制定和实施针对整个企业内部数据的商业应用和技术管理的一系列政策和流程。

        数据治理涉及的IT技术主题包括元数据管理、主数据管理、数据质量、数据集成、监控与报告等。

        数据治理的技术组成  

       数据治理涉及的技术主题包括元数据、数据标准、数据质量、数据集成、主数据、数据资产、数据交换、生命周期、数据安全多产品组成的一整套解决方案。

       所有与数据有关的技术产出物全部通过知识库实现相互之间共享,知识库作为数据治理的后台通道,传输不同平台、环境、技术、工具所提交和需要的元数据信息。        

       数据治理是专注于将数据作为企业的商业资产进行应用和管理的一套管理机制,能够消除数据的不一致性,建立规范的数据应用标准,提高组织的数据质量,实现数据广泛共享,并能够将数据作为组织的宝贵资产应用于业务、管理、战略决策中,发挥数据资产的商业价值。

        如下以某公司数据治理架构为例:

       该数据治理平台融合元数据、数据标准、数据质量、数据集成、主数据、数据资产、数据交换、生命周期、数据安全9大产品,每个模块功能可互相调用,全程可视化操作,打通数据治理各个环节,同时提供各个产品模块任意组合。

       元数据:采集汇总企业系统数据属性的信息,帮助各行各业用户获得更好的数据洞察力,通过元数据之间的关系和影响挖掘隐藏在资源中的价值。

        数据标准:对分散在各系统中的数据提供一套统一的数据命名、数据定义、数据类型、赋值规则等的定义基准,并通过标准评估确保数据在复杂数据环境中维持企业数据模型的一致性、规范性,从源头确保数据的正确性及质量,并可以提升开发和数据管理的一贯性和效率性。

        数据质量:有效识别各类数据质量问题,建立数据监管,形成数据质量管理体系,监控并揭示数据质量问题,提供问题明细查询和质量改进建议,全面提升数据的完整性、准确性、及时性,一致性以及合法性,降低数据管理成本,减少因数据不可靠导致的决策偏差和损失。

        数据集成:可对数据进行清洗、转换、整合、模型管理等处理工作。既可以用于问题数据的修正,也可以用于为数据应用提供可靠的数据模型。

        主数据:帮助企业创建并维护内部共享数据的单一视图,从而提高数据质量,统一商业实体定义,简化改进商业流程并提高业务的响应速度。

        数据资产:汇集企业所有能够产生价值的数据资源,为用户提供资产视图,快速了解企业资产,发现不良资产,为管理员提供决策依据,提升数据资产的价值。

        数据交换:用于实现不同机构不同系统之间进行数据或者文件的传输和共享,提高信息资源的利用率,保证了分布在异构系统之间的信息的互联互通,完成数据的收集、集中、处理、分发、加载、传输,构造统一的数据及文件的传输交换。

        生命周期:管理数据生老病死,建立数据自动归档和销毁,全面监控展现数据的生命过程。

        数据安全:提供数据加密、脱敏、模糊化处理、账号监控等各种数据安全策略,确保数据在使用过程中有恰当的认证、授权、访问和审计等措施。

综上所述,数据治理系统的核心组成在: 元数据管理系统 数据标准 数据质量 数据交互传输 数据安全 数据生命周期等   ----不要怀疑---大神告诉你!

E. 什么是数据治理

数据治理是流程、角色、政策、标准和指标的集合,可确保有效和高效地使用信息,使企业能够实现其目标。它建立了流程和职责,以确保整个企业或企业中使用的数据质量和安全性。数据治理定义了谁可以对什么数据、在什么情况下、使用什么方法采取什么行动。

F. 大数据治理的序言

在不到两年时间中,大数据迅速成为热门词,但对其的解读,却见仁见智。数据科学家醉心于前沿的数据技术开发,经济学家关注大数据的产业价值,企业家期盼大数据的阳光照进日常的经营现实,法学家强调隐私保护…… 欣慰的是,拥抱大数据成为各方的共识,且思且行的大数据“淘金”之旅,已然启动。大数据的“淘金”之旅,需要脚踏实地的努力。大数据治理是连接大数据科学和应用的桥梁,若要到达风光无限的大数据彼岸,大数据治理一定是“必修课”之一。要实现大数据的变现,就离不开科学的大数据治理,离不开与时俱进的管理革新。因此,桑尼尔的《大数据治理》一书,可谓应运而生。中国联通研究院的匡斌先生将该书翻译成中文,相信对中国读者会有所助益。 大数据治理是传统信息治理的延续和扩展。它不可能与传统的信息治理切割,延续性既是保护历史投资的需要,也体现了信息治理准则的一脉相承。 不同类型数据的整合,结构化数据与非结构化数据、准结构化数据的整合,主数据与社交媒体等其他类型数据的整合,不同部门乃至不同行业数据的整合,都需要大量细致的工作。大数据治理涉及人员、流程和软件,大数据需要去伪存真,需要删繁就简,需要化大为小。凡此种种,不胜枚举。 大数据治理的约束条件构成一个三层结构的金字塔,最底层无疑是特定的文化背景和规制环境。根深蒂固的隐私文化,动态演进的隐私规制,是发掘大数据价值面临的最大挑战。第二层则是技术。大数据技术是治理大数据的基础,前向兼容、后向扩展、简便易用的大数据平台和解决方案,自然语言处理、人脸识别等非结构化数据处理等技术,形成“物”的制约。第三层则是人的因素。大数据治理呼唤大批熟稔大数据技术的人才,也需要更多的大数据管理者和应用开发者,他们可以得心应手甚至出神入化地将技术、行业、流程、功能等进行整合。 说到底,大数据治理的核心是人。人既是大数据价值的追求者,又是大数据隐私的主体和捍卫者。就这个意义而言,人的因素是大数据治理的最大制约。人类历史上每一个技术发明与创造,均有“善”与“恶”两面,文明的进步就是发挥技术“善”的一面,治理控制“恶”的一面。 《大数据治理》一书以实用性为导向,通过教科书式的体例安排,对大数据治理进行了全方位的解构,并将大数据治理规程化。对于尚处于大数据战略起飞阶段的组织,本书是一本很好的大数据治理参考蓝本。作者举重若轻,以朴素无华的语言,微言大义的案例,为致力于大数据治理的实操者,奉献了一本有价值的通俗读物。 纵观当今的大数据技术、平台和解决方案,海外厂商仍占据了绝对主流地位。有关大数据的研究和着述,同样如此。现阶段,“拿来主义”尤有必要。从大数据的体量看,中国在大数据领域的潜在地位,无异于中东地区在石油业的地位。相信在不远的将来,在大数据领域,中国将异军突起。 大数据的思想启蒙运动正在进行。从大数据治理起步,不断探索这个领域的产权、法律和交易等问题,才能成为进入大数据世界的先行者。 宽带资本董事长 田溯宁 2014年1月10日

G. 数据治理的何时开始主动数据治理

一些情况要求立即开始主动数据治理,例如当您获得多个 CRM 系统和 ERP 系统,它们要求与多领域 MDM 系统集成,以便让它们继续充当录入系统,或当您的当前源系统非常脆弱或很难维护或修改。
在这些情况下,要忍受困难并从一开始便为主动数据治理作出计划。一些组织拥有成千上万个直接在 MDM 系统中授权主数据的最终用户,并且有一个数据管理员团队支持他们、发现异常、解决低质量匹配、在需要时手动合并重复记录等等。另一种应用情况是当您发现自己最终会选择主动数据治理方法 — 何必再为建立源系统到多领域 MDM 系统的双向集成而争论?您或许不妨直接授权最终用户来编写主数据。

H. 一文让你分清数据管理与数据治理

一文让你分清数据管理与数据治理
当我们谈数据资产管理时,我们究竟在谈什么?就目前而言,我们谈论得最多的非数据管理和数据治理这两个概念莫属。但是对于这两个概念,两者的准确定义是什么,具体区别又是什么,仍是困扰着许多人的关键问题。
数据管理和数据治理有很多地方是互相重叠的,它们都围绕数据这个领域展开,因此这两个术语经常被混为一谈。
此外,每当人们提起数据管理和数据治理的时候,还有一对类似的术语叫信息管理和信息治理,更混淆了人们对它们的理解。关于企业信息管理这个课题,还有许多相关的子集,包括主数据管理、元数据管理、数据生命周期管理等等。
于是,出现了许多不同的理论(或理论家)描述关于在企业中数据/信息的管理以及治理如何运作:它们如何单独运作?它们又如何一起协同工作?是“自下而上”还是“自上而下”的方法更高效?
为了帮助大家弄明白这些术语以及它们之间的关系,本文将着重定义它们的概念,并指出它们的区别,这些定义和区别源自于国际公认的以数据为中心的相关组织,同时还会在一些观点上展开详细的探讨。
数据管理包含数据治理
在说明数据和信息的区别之前,最好从“治理是整体数据管理的一部分”这个概念开始,这个概念目前已经得到了业界的广泛认同。数据管理包含多个不同的领域,其中一个最显着的领域就是数据治理。CMMi协会颁布的数据管理成熟度模型(DMM)使这个概念具体化。DMM模型中包括六个有效数据管理分类,而其中一个就是数据治理。数据管理协会(DAMA)在数据管理知识体系(DMBOK)中也认为,数据治理是数据管理的一部分。在企业信息管理(EIM)这个定义上,Gartner认为EIM是“在组织和技术的边界上结构化、描述、治理信息资产的一个综合学科”。Gartner这个定义不仅强调了数据/信息管理和治理上的紧密关系,也重申了数据管理包含治理这个观点。
治理与管理的区别
在明确数据治理是数据管理的一部分之后,下一个问题就是定义数据管理。治理相对容易界定,它是用来明确相关角色、工作责任和工作流程的,确保数据资产能长期有序地、可持续地得到管理。而数据管理则是一个更为广泛的定义,它与任何时间采集和应用数据的可重复流程的方方面面都紧密相关。例如,简单地建立和规划一个数据仓库,这是数据管理层面的工作。定义谁以及如何访问这个数据仓库,并且实施各种各样针对元数据和资源库管理工作的标准,这是治理层面的工作。数据管理更广泛的定义包含DATAVERSITY上大部分主题为数据管理的文章和博客,其中有一部分是特别针对数据治理的。一个更广泛的定义是,在数据管理过程中要保证一个组织已经将数据转换成有用信息,这项工作所需要的流程和工具就是数据治理的工作。
信息与数据的区别
在上文关于数据管理的第三个定义中,提到了数据和信息的区别。所有的信息都是数据,但并不是所有的数据都是信息。信息是那些容易应用于业务流程并产生特定价值的数据。要成为信息,数据通常必须经历一个严格的治理流程,它使有用的数据从无用数据中分离出来,以及采取若干关键措施增加有用数据的可信度,并将有用数据作为信息使用。数据的特殊点在于创造和使用信息。在Gartner的术语表中,没有单独解释数据管理和数据治理的概念,取与代之的是重点介绍了信息治理和信息管理的概念。
数据治理主要围绕对象:角色
与正式的数据治理流程相关的角色是有限的。这些角色通常包括高层的管理者,他们优化数据治理规划并使资金筹集变得更为容易。这些角度也包括一个治理委员会,由个别高层管理者以及针对治理特定业务和必要流程而赋予相应职责的跨业务部门的人组成。角色也包括数据管理员,确保治理活动的持续开展以及帮忙企业实现业务目标。此外,还有部分“平民”管理员,他们虽然不会明确被指定为数据管理员,但他们仍然在各自业务领域里的治理流程中扮演活跃的角色。
有效的治理不仅需要IT的介入,这是人们的普遍共识。尤其当业务必须更主动地参与到治理方式和数据管理其他层面(例如自助数据分析)的时候,目的是要从这些工作参与中获益。在更多的案例中,特定领域的治理可以直接应用于业务。这就是为什么治理仅需要IT的介入是一个过时且应该摈弃的观点。
数据治理主要围绕对象:领域
数据治理包含许多不同方面的领域:
●元数据:元数据要求数据元素和术语的一致性定义,它们通常聚集于业务词汇表上。
●业务词汇表:对于企业而言,建立统一的业务术语非常关键,如果这些术语和上下文不能横跨整个企业的范畴,那么它将会在不同的业务部门中出现不同的表述。
●生命周期管理:数据保存的时间跨度、数据保存的位置,以及数据如何使用都会随着时间而产生变化,某些生命周期管理还会受到法律法规的影响。
●数据质量:数据质量的具体措施包括数据详细检查的流程,目的是让业务部门信任这些数据。数据质量是非常重要的,有人认为它不同于治理,它极大提升了治理的水平。
●参考数据管理:参考数据提供数据的上下文,尤其是它结合元数据一起考虑的情况下。由于参考数据变更的频率较低,参考数据的治理经常会被忽视。
虽然上述提及的是数据治理在数据管理中所负责的特定领域,但一个至关重要的问题在于,所有组织里的数据必须持续坚持数据治理的原则。
数据建模
数据建模是依赖于数据治理的另一个数据管理中的关键领域,它结合了数据管理与数据治理两者进行协调工作。可以说,为了将数据治理扩展到整个组织,利用一个规范化的数据建模有利于将数据治理工作扩展到其他业务部门。遵从一致性的数据建模,令数据标准变得有价值(特别是应用于大数据)。一个确保数据治理贯穿整个企业的最高效手段,就是利用数据建模技术直接关联不同的数据治理领域,例如数据血缘关系以及数据质量。当需要合并非结构化数据时,数据建模将会更有价值。此外,数据建模加强了治理的结构和形式。
关键的不同点
数据管理其他方面的案例在DMM中有五个类型,包括数据管理战略、数据质量、数据操作(生命周期管理)、平台与架构(例如集成和架构标准),以及支持流程(聚集于其他因素之中的流程和风险管理)。在此重申一点,数据治理和数据管理非常接近是有事实支撑的,数据质量经常被视为与数据治理相结合,甚至被认为是数据治理的产物之一。也许,情景化这两个领域的最好办法,在于理解数据治理是负责正式化任何数据管理当中的流程,数据治理本身着重提供一整套工具和方法,确保企业在实际上治理这些数据。虽然数据治理是数据管理中的一部分,但后者必须要由前者来提供可靠的信息到核心业务流程。

I. 01 数据治理的背景及一些概念

工业互联网代表的是一个开放的、全球化的,将人、数据和机器连接起来的网络。它的核心三要素为:

数据给工业企业带来的价值可以从 企业内部经营管理 外部市场 两方面来分析:

工业大数据的特点:

狭义的数据治理 :是指对数据进行监管和风险管理,保证数据资产的高质量、安全及持续改进。
广义的数据治理 :除了对数据进行监管和风险管理,还要挖掘如何通过数据治理来创建业务价值,即数据价值“变现”。

是由企业拥有或者控制的,能够为企业带来经济利益的,以物理或者电子的方式记录的数据资源。
这一概念包含了以下三点要素:

架构:包含管控域、过程域、治理域、技术域、价值域
核心内容:主要有战略、组织、制度、流程、绩效和工具等
其中,数据治理战略要求企业的信息化战略应当匹配企业的业务战略,因此企业要根据自己的业务目标清晰地定义数据治理的使命、愿景、中长期目标及计划等。

阅读全文

与数据治理这一词什么时候开始出现相关的资料

热点内容
猫粮批发市场怎么样 浏览:883
如何选出多个不同数据 浏览:385
物流数据采集平台有哪些 浏览:228
iphone如何清掉数据 浏览:8
奇特农产品有哪些过人之处 浏览:242
期货交易机会是什么 浏览:669
通过命令行调用的程序怎么调试 浏览:157
养鸽子的技术教学鸽子如何分公母 浏览:422
如何在火山直播上推广产品 浏览:526
生鱼片市场在哪里 浏览:126
老的程序怎么学 浏览:949
贡小美如何选择私护产品 浏览:600
委托代理什么概念 浏览:672
有了美食和技术还需要什么 浏览:518
丰田有什么技术优点 浏览:361
如何选k40数据线 浏览:930
男装推送优惠券怎么给顾客发信息 浏览:553
欧姆龙有哪些大的代理商 浏览:740
一个保险代理点一年挣多少钱 浏览:263
手游代理为什么会热门 浏览:526