① SPSS如何处理缺失ŀ
1、我们首先从Excel里面导入测试数据,依次点击“文件-打开-数据”,选择我们需要的测试数据所在的Excel表格。
2、在图示弹出的“打开Excel数据源”对话框中,我们在工作表下拉框中选择“sheet2”,单击确定即可。
3、接着,我们点开左下角的“数据视图”,仔细观看图示各变量的数据,发现中间用单个句点来标识的地方没有数据(这就是缺失数据,已用红色框标注出来)。
4、分析数据前,对于缺失值的处理非常重要,我们可以了解到缺失的原因,以及缺失值处理的正确与否能够影响到后面的分析结果。首先,缺失值处理前,我们需要做一个缺失值分析。
5、我们依次点击菜单栏“分析-缺失值处理”,会弹出【缺失值分析】对话框。这里我们可以分析我们需要的分析缺失值的变量,和一些估计设置。
6、在图示的案例中,我们选择对5个变量做缺失值分析,我们把这5个变量从左侧的框拖入到右侧的“定量变量”框内(注意这5个变量没有分类变量)。再估计勾选“EM”和“回归”即可。
7、设置好后,我们点击确定,即可在输出文档看到分析的结果。结果包括:单变量的统计。估计均值,估计标准差,EM相关性和回归估计的统计量。
② SPSS处理问卷出现系统缺失值,怎样处理
缺失值处理简单说就是两种处理,一种是删缺失,一种是填补缺失
在缺失值只占总样本量中很小的比例时,各种处理方式都可以用,区别不大
最简单的,找到那3个缺失的数据,将包含缺失的个案也就是被试都整个删掉不用。
第二种方法是用的人比较多的,均值填补法,在spss菜单中选择:转换——替换缺失值,将含缺失的变量选入右边分析框中,默认的方法就是均值填补,OK即可
第三种就是比均值填补高明一点的方法,在spss菜单中选择:分析——缺失值分析,将含缺失的变量选入右边分析狂,注意类别变量和定量变量之分在估计方法中,提供了四种方法,前两种是删除法,后两种是填补法,推荐的最优方法是EM,选择EM复选框后,下方的EM按钮由灰变黑,点击该按钮,选择保存完成数据复选框,然后给新的数据命名,OK之后,spss将生成一个新的数据集,数据集中的数据就是缺失值填补后的
③ SPSS如何处理缺失值
解决方法:重新正确设置来解决此问题。
如下参考:
1.以下表为例,生物成绩中存在缺失值,由于样本量不大,很有可能直接将缺失值去除,这将影响最终的结果。
④ spss 中“变量的值标签”“缺失值”的定义
定义?在value那里面可以定义的,比如变量gender有可能有两个取值:1代表男性,2代表女性。一般如果有填保密或者不愿意回答的,录入的时候可以录成9,然后在missing那里面把9定义上,9就是缺失值了。
重编码要注意的比较多,看具体学科的不同要求了。问问做过的前辈,基本都是经验之谈。
⑤ 数据缺失想要补齐有什么方法,用spss的替换缺失值和缺失值分析完全不会用
1、均值插补。数据的属性分为定距型和非定距型。如果缺失值是定距型的,就以该属性存在值的平均值来插补缺失的值;如果缺失值是非定距型的,就根据统计学中的众数原理,用该属性的众数(即出现频率最高的值)来补齐缺失的值。
2、利用同类均值插补。同均值插补的方法都属于单值插补,不同的是,它用层次聚类模型预测缺失变量的类型,再以该类型的均值插补。假设X=(X1,X2...Xp)为信息完全的变量,Y为存在缺失值的变量。
那么首先对X或其子集行聚类,然后按缺失个案所属类来插补不同类的均值。如果在以后统计分析中还需以引入的解释变量和Y做分析,那么这种插补方法将在模型中引入自相关,给分析造成障碍。
3、极大似然估计(Max Likelihood ,ML)。在缺失类型为随机缺失的条件下,假设模型对于完整的样本是正确的,那么通过观测数据的边际分布可以对未知参数进行极大似然估计(Little and Rubin)。
这种方法也被称为忽略缺失值的极大似然估计,对于极大似然的参数估计实际中常采用的计算方法是期望值最大化(Expectation Maximization,EM)。
4、多重插补(Multiple Imputation,MI)。多值插补的思想来源于贝叶斯估计,认为待插补的值是随机的,它的值来自于已观测到的值。具体实践上通常是估计出待插补的值,然后再加上不同的噪声,形成多组可选插补值。根据某种选择依据,选取最合适的插补值。
(5)spss中数据缺失填写哪个数字扩展阅读
缺失值产生的原因很多,装备故障、无法获取信息、与其他字段不一致、历史原因等都可能产生缺失值。一种典型的处理方法是插值,插值之后的数据可看作服从特定概率分布。另外,也可以删除所有含缺失值的记录,但这个操作也从侧面变动了原始数据的分布特征。
对于缺失值的处理,从总体上来说分为删除存在缺失值的个案和缺失值插补。对于主观数据,人将影响数据的真实性,存在缺失值的样本的其他属性的真实值不能保证,那么依赖于这些属性值的插补也是不可靠的,所以对于主观数据一般不推荐插补的方法。插补主要是针对客观数据,它的可靠性有保证。
⑥ spss 怎么设置缺失ŀ
缺失值分为用户缺失值(User Missing Value)和系统缺失值(System Missing
Value)。用户缺失值指在问卷调查中,把被试不回答的一些选项当作缺失值来处理。用户缺失值的编码一般用研究者自己能够识别的数字来表示,如“0”、“9”、“99”等。系统缺失值主要指计算机默认的缺失方式,如果在输入数据时空缺了某些数据或输入了非法的字符,计算机就把其界定为缺失值,这时的数据标记为“•”。
一、定义缺失值
SPSS有系统缺失值和用户缺失值两类缺失值,系统默认为None(无)。当需要定义缺失值时,单击Missing下的含有“None”单元格,便进入图2-4的“缺失值”窗口。缺失值有以下3种选项:
No missing values:没有缺失值。
Discrete missing values:定义1~3个单一数为缺失值。
Range plus one optional discrete missing
values:定义指定范围为缺失值,同时指定另外一个不在这一范围的单一数为缺失值。
至于其他如单元格列长度(Columns)、单元格字符排列方向(Align)和数据量度(Measure)等均是不常用,一般使用系统默认值就可以了,以便减少工作量。
二、缺失值的处理
一般情况下,定义缺失值后的变量可以进行描述统计、相关分析等统计分析。但是,由于缺失值的出现往往会给统计分析带来一些麻烦和误差,尤其在时间序列分析中更是如此。在COMPUTE命令中,某个变量带有缺失值,则带有缺失值的个案也变成缺失值了。如图所示:
一般地,对缺失值的处理可采用如下方法:
第一,替代法。即采用统计命令Transform→Replace Missing
Values进行替代,或在相关统计功能中利用其【Opions】等参数进行替代。例如对上图表中的数据缺失值的处理:以T49这个变量中的所有数据的平均数为替代值,然后再进行COMPUTE命令处理。如图所示:
第二,剔除法。即剔除有缺失值的题目,或剔除有缺失值的整份问卷。
⑦ spss 怎么设置缺失值
1、我们使用SPSS做数据分析的时候,有时会因为问卷的设置或者数据的保存等原因,造成用于分析的数据部分缺失。我们分析数据前,需要先解决缺失数据问题,在再做分析。
⑧ SPSS录入时缺失值的处理
录入的时候可以直接省略不录入
分析的时候也一般剔除这样的样本。但也有替换的方法,一般有:
均值替换法(mean
imputation),即用其他个案中该变量观测值的平均数对缺失的数据进行替换,但这种方法会产生有偏估计,所以并不被推崇。
个别替换法(single
imputation)通常也被叫做回归替换法(regression
imputation),在该个案的其他变量值都是通过回归估计得到的情况下,这种
方法用缺失数据的条件期望值对它进行替换。这虽然是一个无偏估计,但是却倾向于低估标准差和其他未知性质的测量值,而且这一问题会随着缺失信息的增多而变得更加严重。
多重替代法(multiple
imputation)(rubin,
1977)
。
它从相似情况中或根据后来在可观测的数据上得到的缺省数据的分布情况给每个缺省数据赋予一个模拟值。结合这种方法,研究者可以比较容易地,在不舍弃任何数据的情况下对缺失数据的未知性质进行推断(little
and
rubin,1987;
ubin,1987,
1996)。
⑨ spss缺失值填为0
为什么要将缺失值替换为0?这样分析不是很不保险么?
这里倒是有缺失值插补调整的几种方法可以参考。
1、你首先需要定义你数据中的缺失值:
SPSS的窗口有两个视窗,数据视窗和变量视窗,你在变量视窗中,可以看到有missing那一列,你可以将某种取值定义为缺失值。
2、缺失值插补:
Transform-->Replacing missing values,目前SPSS16.0有5种缺失值插补调整的方法可以选择。
⑩ SPSS如何处理缺失值
解决方法:重新正确设置来解决此问题。
如下参考:
1.以下表为例,生物成绩中存在缺失值,由于样本量不大,很有可能直接将缺失值去除,这将影响最终的结果。