⑴ Python数据分析具体要学习哪些内容
不同的培训机构在Python培训内容上也各有不同,小U在这里以优就业为例给大家简单介绍。优就业的Python课程以项目实战为导向,一共设置了5大阶段,主要学习内容如下:
第一阶段:Python核心编程——Python语言基本介绍、面向对象编程、Linux操作系统、文件系统与用户管理、进程管理与服务配置、Shell编程与bash,源文件编译、版本控制、MySQL使用、MySQL进阶等。
第二阶段:全栈开发——HTML、CSS、JavaScript、jQuery、 BootStrap、Vue、Web开发基础、数据库操作、FLask配置、Django认识、Models、Templates、Views、Tornado框架进阶、ElasticSearch等。
第三阶段:网络爬虫——爬虫与数据、Scrapy框架、Scrapy框架与信息实时抓取、定时爬取与邮件监控、NoSQL数据库、Scrapy-Redis框架、百万量数据采集等。
第四阶段:人工智能——数据分析、pyechart模块动态可视化、词云、分类算法、聚类算法、回归类算法、关联算法、卷积神经网络、TensorFlow+PaddlePaddle、图像识别等。
第五阶段:就业指导——最后就业指导分为面试就业指导、专业技术指导两方面。
Python培训学习路线都是基于培训内容制定的,优就业的Python课程针对零基础学生开设,所以学习路线设置也是由浅入深,循序渐进。
首先学习Python语言基础+Linux+MySQL,这部分内容是初级Python工程师需要掌握的;
其次学习Python web编程基础+Flask框架+Django框架+Tornado框架,这部分内容是Python web工程师需要掌握的;
接下来学习数据爬取+Scrapy框架+分布式爬虫框架,这部分内容是爬虫工程师需要掌握的;
最后学习数据分析+机器学习+深度学习,这部分内容学习完成是数据分析工程师、人工智能工程师需要掌握的。
优就业Python培训班面向零基础人员开设,讲师都是拥有多年的实战开发经验和授课经验,始终致力于给学员更好的课程培训和学习体验。
综上,相信大家对“Python培训内容有哪些?学习路线是如何规划的?”都有了一定的了解,希望对您有所帮助。点击这里领取我们线上学习免费课程。更多关于Python培训的问题,可以持续关注浙江优就业官方网站以及浙江优就业公众号具体了解哦。如果大家有时间的话,最好是能到我们线下基地进行实地考察。
浙江优就业教育:http://zhejiang.ujiuye.com/
⑵ Python想要从事数据分析工作,都要学习哪些知识
就目前来说Python是人工智能的最佳编程语言,想要从事数据分析的话需要学习以下知识:
1、熟练Python语言基础,掌握数据分析建模理论、熟悉数据分析建模过程;
2、熟练NumPy、SciPy和Pandas数据分析工具的使用;特别是Pandas和Numpy,Pandas是Python中一种数据分析的包,而Numpy是一个可以借助Python实现科学计算的包,可以计算和储存大型矩阵。
3、熟练掌握数据可视化工具,结合Python学习统计学、结合Excel学习SQL,然后结合Excel数据分析来学习numpy、pandas等以及数据可视化。
⑶ python做数据分析,有哪些视频教程
链接:https://pan..com/s/1FJZAznKSbwv-X52AM7uSfg
炼数成金:Python数据分析。Python是一种面向对象、直译式计算机程序设计语言。也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。 Python语法简捷而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结在一起。
课程将从Python的基本使用方法开始,一步步讲解,从ETL到各种数据分析方法的使用,并结合实例,让学员能从中借鉴学习。
课程目录:
Python基础
Python的概览——Python的基本介绍、安装与基本语法、变量类型与运算符
了解Python流程控制——条件、循环语句与其他语句
常用函数——函数的定义与使用方法、主要内置函数的介绍
.....
⑷ Python主要内容学的是什么
第一步:Python开发基础
Python全栈开发与人工智能之Python开发基础知识学习内容包括:Python基础语法、数据类型、字符编码、文件操作、函数、装饰器、迭代器、内置方法、常用模块等。
第二步:Python高级编程和数据库开发
Python全栈开发与人工智能之Python高级编程和数据库开发知识学习内容包括:面向对象开发、Socket网络编程、线程、进程、队列、IO多路模型、Mysql数据库开发等。
第三步:前端开发
Python全栈开发与人工智能之前端开发知识学习内容包括:Html、CSS、JavaScript开发、Jquery&bootstrap开发、前端框架VUE开发等。
第十步:高并发语言GO开发
Python全栈开发与人工智能之高并发语言GO开发学习内容包括:GO语言基础、数据类型与文件IO操作、函数和面向对象、并发编程等。
⑸ Python 数据分析与数据挖掘是啥
python数据挖掘(data mining,简称DM),是指从大量的数据中,通过统计学、人工智能、机器学习等方法,挖掘出未知的、且有价值的信息和知识的过程。数据分析通常是直接从数据库取出已有信息,进行一些统计、可视化、文字结论等,最后可能生成一份研究报告性质的东西,以此来辅助决策。数据挖掘不是简单的认为推测就可以,它往往需要针对大量数据,进行大规模运算,才能得到一些统计学规律。
这里可以使用CDA一站式数据分析平台,融合了数据源适配、ETL数据处理、数据建模、数据分析、数据填报、工作流、门户、移动应用等核心功能。其中数据分析模块支持报表分析、敏捷看板、即席报告、幻灯片、酷屏、数据填报、数据挖掘等多种分析手段对数据进行分析、展现、应用。帮助企业发现潜在的信息,挖掘数据的潜在价值。
如果你对于Python学数据挖掘感兴趣的话,推荐CDA数据分析师的课程。课程内容兼顾培养解决数据挖掘流程问题的横向能力以及解决数据挖掘算法问题的纵向能力。真正理解商业思维,项目思维,能够遇到问题解决问题;要求学生在使用算法解决微观根因分析、预测分析的问题上,根据业务场景来综合判断,洞察数据规律,使用正确的数据清洗与特征工程方法,综合使用统计分析方法、统计模型、运筹学、机器学习、文本挖掘算法,而非单一的机器学习算法。点击预约免费试听课。
⑹ 谁知道这个python数据分析教程是哪个机构的吗或者有资源的! 非常感谢
使用Python进行数据挖掘是最近几年才开始火起来的,之前网上很多的资料都是关于Python网页开发等。但使用Python进行数据挖掘的侧重点已经完成不一样了。本人就是浪费了很多时间来筛选这些博客、书籍。所以就有了本文,希望能帮大家少走一点弯路。
熟练掌握任何一门语言,几乎都需要经过以下过程:
良师--学习Python课程+入门书籍+浏览技术博客
社区帮助--善于使用搜索引擎、Mail List
益友 -- 寻找学习伙伴
Learn by Code --项目实践
一、Python学习课程推荐
这两个学习课程从最基础的Python语法开始,介绍了Python数据分析、统计模型以及机器学习的各个方面,内容十分充足。之所以建议使用老外的课程是因为,老外上课假定你什么都不会,讲解深入浅出,尤其是对于华盛顿大学的机器学习课程,把复杂的概念讲解得十分简单。
1. 密歇根大学的《学习使用Python编程并分析数据》主要包括以下课程(讲解十分详细,深入浅出,非常适合入门学习,视频都是有字幕的):
《大家的编程 (Python 入门》:课程涵盖了如何使用Python的基本指令编写程序. 课程对学生没有先设要求, 我们只涉及到最基本的数学, 有一定使用电脑经验的人都可以完全掌握这门课的内容.
《Python 数据结构》:本课程将介绍Python编程语言的核心数据结构。我们将学习编程语言的基础概念,探索如何使用Python的内置数据结构,如列表、字典、元组,进行更为复杂的数据分析。
《使用 Python 访问网络数据》:使用Python爬取和解析网络数据
《Python 数据库开发》:使用Python和数据库进行交互
《使用 Python 获取并处理数据,并用可视化方式展现数据》
2. 华盛顿大学的《机器学习》专项课程
在专项课程页面无法选择旁听,必须点击进入单独课程页面才可,这个课程专题旁听是有限制的,无法提交作业;如有需求,可以申请奖学金,回答三个问题即可,系统自动通过申请。
《机器学习基础:案例研究》:你是否好奇数据可以告诉你什么?你是否想在关于机器学习促进商业的核心方式上有深层次的理解?你是否想能同专家们讨论关于回归,分类,深度学习以及推荐系统的一切?在这门课上,你将会通过一系列实际案例学习来获取实践经历。
《机器学习:回归》
《机器学习:分类》
《机器学习:聚类和检索》
《机器学习:推荐系统和降维》
《机器学习:应用深度学习创建智能运用》
二、网上打码教程
Learn by doing!!! 学习编程最有效的方式就是敲代码!
Codecademy围绕Python 的基础语法,内容非常丰富。
DatacampPython基本语法(他家的R语言课程十分不错!)
三、Python技术博客
简单介绍一些非常棒的Python技术学习的博客
1.廖雪峰Python教程简单易上手的Python基础语法教程,值得学习, Python 2和Python 3版本都有。
2.非常棒的pandas练习Github Repo
3.很详细的Python 爬虫教程
4.国外Data Science博客大全
四、Python入门书籍推荐
常用书籍下载网址,几乎囊括了网上能找得到的所有Python相关的书籍(PDF、Epub和mo bi格式),且提供云盘下载链接。你值得拥有!
python | 搜索结果
1. 掌握Python语法的基础上学习《Python for data analysis》是比较不错的选择,涵盖了ipython notebook、Numpy、Scipy和Pandas包的使用。
2.《Python数据分析与挖掘实战》介绍了使用Python进行数据挖掘的详细案例,数据和代码都可以下载,作为机器学习的进阶学习是不错的选择(这本书也用对应的R语言和Matlab 版本)。
3.《Python Cookbook》很厚的一本书,可以作为Python语法查询手册。
再添加几个外文书籍下载网址:
1.All IT eBooks全
2.Library Genesis各种书籍,不局限于编程书籍
3.Fox eBook - eBooks Free Download Site
4.Development / Programming / AvaxHome
五、推荐订阅博客(更细频率较高)
iPhone上可以使用Reeder阅读器,Instapaper用来保存后稍后阅读,因为信息量比较大。
No free HunchKaggle竞赛平台的官方博客,包括一些优秀的代码解读以及高分选手的采访,十分有用的经验(来自不同背景,不同年龄层次,不同职业的选手)
Flowing Data十分有用的数据分析的案例
Python日报内容十分精彩的集锦(中文)
六、FAQ (待续)
Python 2.x还是Python 3.x?
如何安装Python包? 强烈推荐Anaconda包,你值得拥有!尤其是Windows系统。
是否需要很强的统计和数学背景? 有良好的数学和统计背景固然很好,但是现在很多岗位对数学和统计背景要求并不很多,都是简单的算法,Python编程已经能够很方便地实现,更多的是对业务的深入理解。如有需要建议,边学习Python边学习数学统计。
七、实践项目
Kaggle竞赛项目,里面不仅仅有很多竞赛项目,而且有很多可供学习的代码、博客以及论坛,都是实战项目,有很强的实践价值。
⑺ python数据分析要学哪些东西
python数据分析要学4点:
1、熟练地使用数据分析主流工具。
2、数据库、数据采集核心技能。
人工智能是计算机科学的一个分支,它企图了解智能的本质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。
⑻ 想要自学python,有什么好的学习方法推荐
人生苦短,我选Python!
在学习之前先给自己定一个目标规划,培养自己对编程的兴趣,在学习过程中一定要碰敲代码,学会做笔记,但不用刻意去记住这些代码,理解代码比记住代码更重要。学会使用搜索引擎的能力,学会自己解决问题,除了这些要多看大牛的技术专栏,通过对比大牛认清自己的现状并及时做出调整和改变。
学编程是一个长期的过程。所有各位小伙伴一定要有自己的一个长期计划,并把长期的计划分解成段目标,目标完成后给自己一定的激励,一句话,加油就完事儿了。
⑼ python数据分析需要学习哪些内容
1.统计基础
理工科的学生在本科阶段学习过概率论与数理统计,单从做数据分析的角度已经够用。其他方面,可以根据需要查看相关书籍,随时进行查漏补缺即可。个人推荐《深入浅出统计学》,可以让统计理论的学习有趣又自然。
2.数据库知识
关系型数据库很重要。在学习数据分析的初期甚至很长一段时间,你接触到的数据都存储在关系型数据库中,需要学习SQL语言进行数据查询。关于SQL语言,强力推荐《SQL必知必会》,整本书通俗易懂,是学习SQL语言的不二之选。
学习数据库的本质就是在学习一种与数据打交道的逻辑思维与能力。编程中的很多思想都和关系型数据库、SQL相通,比如:SQL中对data进行group by的操作,这个在Excel里类似于透视表,在Python/R中也有相应的group function去处理数据。甚至在以后的进阶过程,你会接触到分布式数据库和所对应的no-SQL语句。
3.编程能力
Excel。 透视表(Pivot Table)是做数据分析的必备技能。透视表可以帮你迅速汇总数据,看到各类型数据的直观特征就像是让你站在更高的视角看待数据。作为进阶,Excel自带的函数、各种插件,以及VBA也是很好的工具。
⑽ 上有哪些值得学习的Python,数据分析的课程
链接:https://pan..com/s/1FJZAznKSbwv-X52AM7uSfg
炼数成金:Python数据分析。Python是一种面向对象、直译式计算机程序设计语言。也是一种功能强大而完善的通用型语言,已经具有十多年的发展历史,成熟且稳定。Python 具有脚本语言中最丰富和强大的类库,足以支持绝大多数日常应用。 Python语法简捷而清晰,具有丰富和强大的类库。它常被昵称为胶水语言,它能够很轻松的把用其他语言制作的各种模块(尤其是C/C++)轻松地联结在一起。
课程将从Python的基本使用方法开始,一步步讲解,从ETL到各种数据分析方法的使用,并结合实例,让学员能从中借鉴学习。
课程目录:
Python基础
Python的概览——Python的基本介绍、安装与基本语法、变量类型与运算符
了解Python流程控制——条件、循环语句与其他语句
常用函数——函数的定义与使用方法、主要内置函数的介绍
.....