Ⅰ 生物信息学
一, 生物信息学发展简介
生物信息学是建立在分子生物学的基础上的,因此,要了解生物信息学,就
必须先对分子生物学的发展有一个简单的了解.研究生物细胞的生物大分子的结
构与功能很早就已经开始,1866年孟德尔从实验上提出了假设:基因是以生物
成分存在[1],1871年Miescher从死的白细胞核中分离出脱氧核糖核酸(DNA),
在Avery和McCarty于1944年证明了DNA是生命器官的遗传物质以前,人们
仍然认为染色体蛋白质携带基因,而DNA是一个次要的角色.
1944年Chargaff发现了着名的Chargaff规律,即DNA中鸟嘌呤的量与胞嘧
定的量总是相等,腺嘌呤与胸腺嘧啶的量相等.与此同时,Wilkins与Franklin
用X射线衍射技术测定了DNA纤维的结构.1953年James Watson 和Francis
Crick在Nature杂志上推测出DNA的三维结构(双螺旋).DNA以磷酸糖链形
成发双股螺旋,脱氧核糖上的碱基按Chargaff规律构成双股磷酸糖链之间的碱基
对.这个模型表明DNA具有自身互补的结构,根据碱基对原则,DNA中贮存的
遗传信息可以精确地进行复制.他们的理论奠定了分子生物学的基础.
DNA双螺旋模型已经预示出了DNA复制的规则,Kornberg于1956年从大
肠杆菌(E.coli)中分离出DNA聚合酶I(DNA polymerase I),能使4种dNTP连接
成DNA.DNA的复制需要一个DNA作为模板.Meselson与Stahl(1958)用实验
方法证明了DNA复制是一种半保留复制.Crick于1954年提出了遗传信息传递
的规律,DNA是合成RNA的模板,RNA又是合成蛋白质的模板,称之为中心
法则(Central dogma),这一中心法则对以后分子生物学和生物信息学的发展都起
到了极其重要的指导作用.
经过Nirenberg和Matthai(1963)的努力研究,编码20氨基酸的遗传密码
得到了破译.限制性内切酶的发现和重组DNA的克隆(clone)奠定了基因工程
的技术基础.
正是由于分子生物学的研究对生命科学的发展有巨大的推动作用,生物信息
学的出现也就成了一种必然.
2001年2月,人类基因组工程测序的完成,使生物信息学走向了一个高潮.
由于DNA自动测序技术的快速发展,DNA数据库中的核酸序列公共数据量以每
天106bp速度增长,生物信息迅速地膨胀成数据的海洋.毫无疑问,我们正从一
个积累数据向解释数据的时代转变,数据量的巨大积累往往蕴含着潜在突破性发
现的可能,"生物信息学"正是从这一前提产生的交叉学科.粗略地说,该领域
的核心内容是研究如何通过对DNA序列的统计计算分析,更加深入地理解DNA
序列,结构,演化及其与生物功能之间的关系,其研究课题涉及到分子生物学,
分子演化及结构生物学,统计学及计算机科学等许多领域.
生物信息学是内涵非常丰富的学科,其核心是基因组信息学,包括基因组信
息的获取,处理,存储,分配和解释.基因组信息学的关键是"读懂"基因组的核
苷酸顺序,即全部基因在染色体上的确切位置以及各DNA片段的功能;同时在
发现了新基因信息之后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的
功能进行药物设计[2].了解基因表达的调控机理也是生物信息学的重要内容,根
据生物分子在基因调控中的作用,描述人类疾病的诊断,治疗内在规律.它的研
究目标是揭示"基因组信息结构的复杂性及遗传语言的根本规律",解释生命的遗
传语言.生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研
究的前沿.
二, 生物信息学的主要研究方向
生物信息学在短短十几年间,已经形成了多个研究方向,以下简要介绍一些
主要的研究重点.
1,序列比对(Sequence Alignment)
序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似
性.从生物学的初衷来看,这一问题包含了以下几个意义[3]:
从相互重叠的序列片断中重构DNA的完整序列.
在各种试验条件下从探测数据(probe data)中决定物理和基因图
存贮,遍历和比较数据库中的DNA序列
比较两个或多个序列的相似性
在数据库中搜索相关序列和子序列
寻找核苷酸(nucleotides)的连续产生模式
找出蛋白质和DNA序列中的信息成分
序列比对考虑了DNA序列的生物学特性,如序列局部发生的插入,删除(前
两种简称为indel)和替代,序列的目标函数获得序列之间突变集最小距离加权
和或最大相似性和,对齐的方法包括全局对齐,局部对齐,代沟惩罚等.两个
序列比对常采用动态规划算法,这种算法在序列长度较小时适用,然而对于海
量基因序列(如人的DNA序列高达109bp),这一方法就不太适用,甚至采用算
法复杂性为线性的也难以奏效.因此,启发式方法的引入势在必然,着名的
BALST和FASTA算法及相应的改进方法均是从此前提出发的.
2, 蛋白质结构比对和预测
基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性.
蛋白质的结构与功能是密切相关的,一般认为,具有相似功能的蛋白质结构一般
相似.蛋白质是由氨基酸组成的长链,长度从50到1000~3000AA(Amino Acids),
蛋白质具有多种功能,如酶,物质的存贮和运输,信号传递,抗体等等.氨基酸
的序列内在的决定了蛋白质的3维结构.一般认为,蛋白质有四级不同的结构.
研究蛋白质结构和预测的理由是:医药上可以理解生物的功能,寻找docking
drugs的目标,农业上获得更好的农作物的基因工程,工业上有利用酶的合成.
直接对蛋白质结构进行比对的原因是由于蛋白质的3维结构比其一级结构
在进化中更稳定的保留,同时也包含了较AA序列更多的信息.
蛋白质3维结构研究的前提假设是内在的氨基酸序列与3维结构一一对应
(不一定全真),物理上可用最小能量来解释.
从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构.同
源建模(homology modeling)和指认(Threading)方法属于这一范畴.同源建模用
于寻找具有高度相似性的蛋白质结构(超过30%氨基酸相同),后者则用于比较
进化族中不同的蛋白质结构.
然而,蛋白结构预测研究现状还远远不能满足实际需要.
3, 基因识别,非编码区分析研究.
基因识别的基本问题是给定基因组序列后,正确识别基因的范围和在基因组
序列中的精确位置.非编码区由内含子组成(introns),一般在形成蛋白质后被丢
弃,但从实验中,如果去除非编码区,又不能完成基因的复制.显然,DNA序
列作为一种遗传语言,既包含在编码区,又隐含在非编码序列中.分析非编码
区DNA序列目前没有一般性的指导方法.
在人类基因组中,并非所有的序列均被编码,即是某种蛋白质的模板,已
完成编码部分仅占人类基因总序列的3~5%,显然,手工的搜索如此大的基因序
列是难以想象的.
侦测密码区的方法包括测量密码区密码子(codon)的频率,一阶和二阶马尔
可夫链,ORF(Open Reading Frames),启动子(promoter)识别,HMM(Hidden
Markov Model)和GENSCAN,Splice Alignment等等.
4, 分子进化和比较基因组学
分子进化是利用不同物种中同一基因序列的异同来研究生物的进化,构建进
化树.既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相
关蛋白质的结构比对来研究分子进化,其前提假定是相似种族在基因上具有相似
性.通过比较可以在基因组层面上发现哪些是不同种族中共同的,哪些是不同的.
早期研究方法常采用外在的因素,如大小,肤色,肢体的数量等等作为进化
的依据.近年来较多模式生物基因组测序任务的完成,人们可从整个基因组的角
度来研究分子进化.在匹配不同种族的基因时,一般须处理三种情况:
Orthologous: 不同种族,相同功能的基因
Paralogous: 相同种族,不同功能的基因
Xenologs: 有机体间采用其他方式传递的基因,如被病毒注入的基因.
这一领域常采用的方法是构造进化树,通过基于特征(即DNA序列或蛋白
质中的氨基酸的碱基的特定位置)和基于距离(对齐的分数)的方法和一些传统
的聚类方法(如UPGMA)来实现.
5, 序列重叠群(Contigs)装配
根据现行的测序技术,每次反应只能测出500 或更多一些碱基对的序列,
如人类基因的测量就采用了短枪(shortgun)方法,这就要求把大量的较短的序列
全体构成了重叠群(Contigs).逐步把它们拼接起来形成序列更长的重叠群,直
至得到完整序列的过程称为重叠群装配.从算法层次来看,序列的重叠群是一个
NP-完全问题.
6, 遗传密码的起源
通常对遗传密码的研究认为,密码子与氨基酸之间的关系是生物进化历史上
一次偶然的事件而造成的,并被固定在现代生物的共同祖先里,一直延续至今.
不同于这种"冻结"理论,有人曾分别提出过选择优化,化学和历史等三种学说
来解释遗传密码.随着各种生物基因组测序任务的完成,为研究遗传密码的起源
和检验上述理论的真伪提供了新的素材.
7, 基于结构的药物设计
人类基因工程的目的之一是要了解人体内约10万种蛋白质的结构,功能,
相互作用以及与各种人类疾病之间的关系,寻求各种治疗和预防方法,包括药物
治疗.基于生物大分子结构及小分子结构的药物设计是生物信息学中的极为重要
的研究领域.为了抑制某些酶或蛋白质的活性,在已知其蛋白质3级结构的基础
上,可以利用分子对齐算法,在计算机上设计抑制剂分子,作为候选药物.这一
领域目的是发现新的基因药物,有着巨大的经济效益.
8, 其他
如基因表达谱分析,代谢网络分析;基因芯片设计和蛋白质组学数据分析等,
逐渐成为生物信息学中新兴的重要研究领域;在学科方面,由生物信息学衍生的
学科包括结构基因组学,功能基因组学,比较基因组学,蛋白质学,药物基因组
学,中药基因组学,肿瘤基因组学,分子流行病学和环境基因组学.
从现在的发展不难看出,基因工程已经进入了后基因组时代.我们也有应对
与生物信息学密切相关的如机器学习,和数学中可能存在的误导有一个清楚的认
识.
三, 生物信息学与机器学习
生物信息的大规模给数据挖掘提出了新课题和挑战,需要新的思想的加入.
常规的计算机算法仍可以应用于生物数据分析中,但越来越不适用于序列分析问
题.究竟原因,是由于生物系统本质上的模型复杂性及缺乏在分子层上建立的完
备的生命组织理论.
西蒙曾给出学习的定义:学习是系统的变化,这种变化可使系统做相同工作
时更有效[4].机器学习的目的是期望能从数据中自动地获得相应的理论,通过采
用如推理,模型拟合及从样本中学习,尤其适用于缺乏一般性的理论,"噪声"
模式,及大规模数据集.因此,机器学习形成了与常规方法互补的可行的方法.
机器学习使得利用计算机从海量的生物信息中提取有用知识,发现知识成为可能
[5].
机器学习方法在大样本,多向量的数据分析工作中发挥着日益重要的作用,
而目前大量的基因数据库处理需要计算机能自动识别,标注,以避免即耗时又花
费巨大的人工处理方法.早期的科学方法—观测和假设----面对高数据的体积,
快速的数据获取率和客观分析的要求---已经不能仅依赖于人的感知来处理了.因
而,生物信息学与机器学习相结合也就成了必然.
机器学习中最基本的理论框架是建立在概率基础上的,从某种意义来说,是
统计模型拟合的延续,其目的均为提取有用信息.机器学习与模式识别和统计推
理密切相关.学习方法包括数据聚类,神经网络分类器和非线性回归等等.隐马
尔可夫模型也广泛用于预测DNA的基因结构.目前研究重心包括:1)观测和
探索有趣的现象.目前ML研究的焦点是如何可视化和探索高维向量数据.一般
的方法是将其约简至低维空间,如常规的主成分分析(PCA),核主成分分析
(KPCA),独立成分分析(Independent component analysis),局部线性嵌套(Locally
Linear embedding).2)生成假设和形式化模型来解释现象[6].大多数聚类方法可
看成是拟合向量数据至某种简单分布的混合.在生物信息学中聚类方法已经用于
microarray数据分析中,癌症类型分类及其他方向中.机器学习也用于从基因数
据库中获得相应的现象解释.
机器学习加速了生物信息学的进展,也带了相应的问题.机器学习方法大多
假定数据符合某种相对固定的模型,而一般数据结构通常是可变的,在生物信息
学中尤其如此,因此,有必要建立一套不依赖于假定数据结构的一般性方法来寻
找数据集的内在结构.其次,机器学习方法中常采用"黑箱"操作,如神经网络
和隐马尔可夫模型,对于获得特定解的内在机理仍不清楚.
四, 生物信息学的数学问题
生物信息学中数学占了很大的比重.统计学,包括多元统计学,是生物信息
学的数学基础之一;概率论与随机过程理论,如近年来兴起的隐马尔科夫链模型
(HMM),在生物信息学中有重要应用;其他如用于序列比对的运筹学;蛋白质
空间结构预测和分子对接研究中采用的最优化理论;研究DNA超螺旋结构的拓
扑学;研究遗传密码和DNA序列的对称性方面的群论等等.总之,各种数学理
论或多或少在生物学研究中起到了相应的作用.
但并非所有的数学方法在引入生物信息学中都能普遍成立的,以下以统计学
和度量空间为例来说明.
1, 统计学的悖论
数学的发展是伴随悖论而发展的.对于进化树研究和聚类研究中最显着的悖
论莫过于均值了,如图1:
图1 两组同心圆的数据集
图1是两组同心圆构成的数据集,显然,两组数据集的均值均在圆点,这也
就说明了要采用常规的均值方法不能将这两类分开,也表明均值并不能带来更多
的数据的几何性质.那么,如果数据呈现类似的特有分布时,常有的进化树算法
和聚类算法(如K-均值)往往会得错误的结论.统计上存在的陷阱往往是由于
对数据的结构缺乏一般性认识而产生的.
2, 度量空间的假设
在生物信息学中,进化树的确立,基因的聚类等都需要引入度量的概念.举
例来说,距离上相近或具有相似性的基因等具有相同的功能,在进化树中满足分
值最小的具有相同的父系,这一度量空间的前提假设是度量在全局意义下成立.
那么,是否这种前提假设具有普适性呢
我们不妨给出一般的描述:假定两个向量为A,B,其中,
,则在假定且满足维数间线性无关的前提下,两个
向量的度量可定义为:
(1)
依据上式可以得到满足正交不变运动群的欧氏度量空间,这也是大多数生物信息
学中常采用的一般性描述,即假定了变量间线性无关.
然而,这种假设一般不能正确描述度量的性质,尤其在高维数据集时,不考
虑数据变量间的非线性相关性显然存在问题,由此,我们可以认为,一个正确的
度量公式可由下式给出:
(2)
上式中采用了爱因斯坦和式约定,描述了变量间的度量关系.后者在满足
(3)
时等价于(1),因而是更一般的描述,然而问题在于如何准确描述变量间的非线
性相关性,我们正在研究这个问题.
五, 几种统计学习理论在生物信息学中应用的困难
生物信息学中面对的数据量和数据库都是规模很大的,而相对的目标函数却
一般难以给出明确的定义.生物信息学面临的这种困难,可以描述成问题规模的
巨大以及问题定义的病态性之间的矛盾,一般从数学上来看,引入某个正则项来
改善性能是必然的[7].以下对基于这一思想产生的统计学习理论[8],Kolmogorov
复杂性[98]和BIC(Bayesian Information Criterion)[109]及其存在的问题给出简要介
绍.
支持向量机(SVM)是近来较热门的一种方法,其研究背景是Vapnik的统计
学习理论,是通过最大化两个数据集的最大间隔来实现分类,对于非线性问题则
采用核函数将数据集映射至高维空间而又无需显式描述数据集在高维空间的性
质,这一方法较之神经方法的好处在于将神经网络隐层的参数选择简化为对核函
数的选择,因此,受到广泛的注意.在生物信息学中也开始受到重视,然而,核
函数的选择问题本身是一个相当困难的问题,从这个层次来看,最优核函数的选
择可能只是一种理想,SVM也有可能象神经网络一样只是机器学习研究进程中
又一个大气泡.
Kolmogorov复杂性思想与统计学习理论思想分别从不同的角度描述了学习
的性质,前者从编码的角度,后者基于有限样本来获得一致收敛性.Kolmogorov
复杂性是不可计算的,因此由此衍生了MDL原则(最小描述长度),其最初只
适用于离散数据,最近已经推广至连续数据集中,试图从编码角度获得对模型参
数的最小描述.其缺陷在于建模的复杂性过高,导致在大数据集中难以运用.
BIC准则从模型复杂性角度来考虑,BIC准则对模型复杂度较高的给予大的
惩罚,反之,惩罚则小,隐式地体现了奥卡姆剃刀("Occam Razor")原理,近
年也广泛应用于生物信息学中.BIC准则的主要局限是对参数模型的假定和先验
的选择的敏感性,在数据量较大时处理较慢.因此,在这一方面仍然有许多探索
的空间.
六, 讨论与总结
人类对基因的认识,从以往的对单个基因的了解,上升到在整个基因组水平
上考察基因的组织结构和信息结构,考察基因之间在位置,结构和功能上的相互
关系.这就要求生物信息学在一些基本的思路上要做本质的观念转变,本节就这
些问题做出探讨和思索.
启发式方法:
Simond在人类的认知一书中指出,人在解决问题时,一般并不去寻找最优
的方法,而只要求找到一个满意的方法.因为即使是解决最简单的问题,要想得
到次数最少,效能最高的解决方法也是非常困难的.最优方法和满意方法之间的
困难程度相差很大,后者不依赖于问题的空间,不需要进行全部搜索,而只要能
达到解决的程度就可以了.正如前所述,面对大规模的序列和蛋白质结构数据集,
要获得全局结果,往往是即使算法复杂度为线性时也不能够得到好的结果,因此,
要通过变换解空间或不依赖于问题的解空间获得满意解,生物信息学仍需要人工
智能和认知科学对人脑的进一步认识,并从中得到更好的启发式方法.
问题规模不同的处理:
Marvin Minsky在人工智能研究中曾指出:小规模数据量的处理向大规模数
据量推广时,往往并非算法上的改进能做到的,更多的是要做本质性的变化.这
好比一个人爬树,每天都可以爬高一些,但要想爬到月球,就必须采用其他方法
一样.在分子生物学中,传统的实验方法已不适应处理飞速增长的海量数据.同
样,在采用计算机处理上,也并非依靠原有的计算机算法就能够解决现有的数据
挖掘问题.如在序列对齐(sequence Alignment)问题上,在小规模数据中可以采用
动态规划,而在大规模序列对齐时不得不引入启发式方法,如BALST,FASTA.
乐观中的隐扰
生物信息学是一门新兴学科,起步于20世纪90年代,至今已进入"后基因
组时代",目前在这一领域的研究人员均呈普遍乐观态度,那么,是否存在潜在
的隐扰呢
不妨回顾一下早期人工智能的发展史[11],在1960年左右,西蒙曾相信不出
十年,人类即可象完成登月一样完成对人的模拟,造出一个与人智能行为完全相
同的机器人.而至今为止,这一诺言仍然遥遥无期.尽管人工智能研究得到的成
果已经渗入到各个领域,但对人的思维行为的了解远未完全明了.从本质来看,
这是由于最初人工智能研究上定位错误以及没有从认识论角度看清人工智能的
本质造成的;从研究角度来看,将智能行为还原成一般的形式化语言和规则并不
能完整描述人的行为,期望物理科学的成功同样在人工智能研究中适用并不现
实.
反观生物信息学,其目的是期望从基因序列上解开一切生物的基本奥秘,从
结构上获得生命的生理机制,这从哲学上来看是期望从分子层次上解释人类的所
有行为和功能和致病原因.这类似于人工智能早期发展中表现的乐观行为,也来
自于早期分子生物学,生物物理和生物化学的成就.然而,从本质上来讲,与人
工智能研究相似,都是希望将生命的奥秘还原成孤立的基因序列或单个蛋白质的
功能,而很少强调基因序列或蛋白质组作为一个整体在生命体中的调控作用.我
们因此也不得不思考,这种研究的最终结果是否能够支撑我们对生物信息学的乐
观呢 现在说肯定的话也许为时尚早.
综上所述,不难看出,生物信息学并不是一个足以乐观的领域,究竟原因,
是由于其是基于分子生物学与多种学科交叉而成的新学科,现有的形势仍表现为
各种学科的简单堆砌,相互之间的联系并不是特别的紧密.在处理大规模数据方
面,没有行之有效的一般性方法;而对于大规模数据内在的生成机制也没有完全
明了,这使得生物信息学的研究短期内很难有突破性的结果.那么,要得到真正
的解决,最终不能从计算机科学得到,真正地解决可能还是得从生物学自身,从
数学上的新思路来获得本质性的动力.
毫无疑问,正如Dulbecco1986年所说:"人类的DNA序列是人类的真谛,
这个世界上发生的一切事情,都与这一序列息息相关".但要完全破译这一序列
以及相关的内容,我们还有相当长的路要走.
(来源 ------[InfoBio.org | 生物信息学研讨组])http://www.infobio.org
生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。其研究重点主要体现在基因组学(Genomics)和蛋白学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。
生物信息学是一门利用计算机技术研究生物系统之规律的学科。
目前的生物信息学基本上只是分子生物学与信息技术(尤其是因特网技术)的结合体。生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。
1990年代以来,伴随着各种基因组测序计划的展开和分子结构测定技术的突破和Internet的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。对生物信息学工作者提出了严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?
生物信息学的另一个挑战是从蛋白质的氨基酸序列预测蛋白质结构。这个难题已困扰理论生物学家达半个多世纪,如今找到问题答案要求正变得日益迫切。诺贝尔奖获得者W. Gilbert在1991年曾经指出:“传统生物学解决问题的方式是实验的。现在,基于全部基因都将知晓,并以电子可操作的方式驻留在数据库中,新的生物学研究模式的出发点应是理论的。一个科学家将从理论推测出发,然后再回到实验中去,追踪或验证这些理论假设”。
生物信息学的主要研究方向: 基因组学 - 蛋白质组学 - 系统生物学 - 比较基因组学
姑且不去引用生物信息学冗长的定义,以通俗的语言阐述其核心应用即是:随着包括人类基因组计划在内的生物基因组测序工程的里程碑式的进展,由此产生的包括生物体生老病死的生物数据以前所未有的速度递增,目前已达到每14个月翻一番的速度。同时随着互联网的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。然而这些仅仅是原始生物信息的获取,是生物信息学产业发展的初组阶段,这一阶段的生物信息学企业大都以出售生物数据库为生。以人类基因组测序而闻名的塞莱拉公司即是这一阶段的成功代表。
原始的生物信息资源挖掘出来后,生命科学工作者面临着严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学产业的高级阶段体现于此,人类从此进入了以生物信息学为中心的后基因组时代。结合生物信息学的新药创新工程即是这一阶段的典型应用。
Ⅱ 生物信息学实验教学中如何巧用数据库
生物信息学中数学占了很大的比重。统计学,包括多元统计学,是生物信息学的数学基础之一;概率论与随机过程理论,如隐马尔科夫链模型(HMM),在生物信息学中有重要应用;其他如用于序列比对的运筹学;蛋白质空间结构预测和分子对接研究中采用的最优化理论;研究DNA超螺旋结构的拓扑学;研究遗传密码和DNA序列的对称性方面的群论等等.总之,各种数学理论或多或少在生物学研究中起到了相应的作用.但并非所有的数学方法在引入生物信息学中都能普遍成立的,以下以统计学和度量空间为例来说明. Simond在人类的认知一书中指出,人在解决问题时,一般并不去寻找最优的方法,而只要求找到一个满意的方法.因为即使是解决最简单的问题,要想得到次数最少,效能最高的解决方法也是非常困难的.最优方法和满意方法之间的困难程度相差很大,后者不依赖于问题的空间,不需要进行全部搜索,而只要能达到解决的程度就可以了.正如前所述,面对大规模的序列和蛋白质结构数据集,要获得全局结果,往往是即使算法复杂度为线性时也不能够得到好的结果,因此,要通过变换解空间或不依赖于问题的解空间获得满意解,生物信息学仍需要人工智能和认知科学对人脑的进一步认识,并从中得到更好的启发式方法. 问题规模不同的处理:Marvin Minsky在人工智能研究中曾指出:小规模数据量的处理向大规模数据量推广时,往往并非算法上的改进能做到的,更多的是要做本质性的变化.这好比一个人爬树,每天都可以爬高一些,但要想爬到月球,就必须采用其他方法一样.在分子生物学中,传统的实验方法已不适应处理飞速增长的海量数据.同样,在采用计算机处理上,也并非依靠原有的计算机算法就能够解决现有的数据挖掘问题.如在序列对齐(sequence Alignment)问题上,在小规模数据中可以采用动态规划,而在大规模序列对齐时不得不引入启发式方法,如BLAST,FASTA. 综上所述,不难看出,生物信息学并不是一个足以乐观的领域,究竟原因,是由于其是基于分子生物学与多种学科交叉而成的新学科,现有的形势仍表现为各种学科的简单堆砌,相互之间的联系并不是特别的紧密。在处理大规模数据方面,没有行之有效的一般性方法;而对于大规模数据内在的生成机制也没有完全明了,这使得生物信息学的研究短期内很难有突破性的结果。那么,要得到真正的解决,最终不能从计算机科学得到,真正地解决可能还是得从生物学自身,从数学上的新思路来获得本质性的动力。毫无疑问,正如Dulbecco1986年所说:人类的DNA序列是人类的真谛,这个世界上发生的一切事情,都与这一序列息息相关。但要完全破译这一序列以及相关的内容,我们还有相当长的路要走。
Ⅲ 生物信息学研究的内容
生物信息学的主要研究内容
1、序列比对(Alignment)
基本问题是比较两个或两个以上符号序列的相似性或不相似性。序列比对是生物信息学的基础,非常重要。两个序列的比对有较成熟的动态规划算法,以及在此基础上编写的比对软件包BLAST和FASTA,可以免费下载使用。这些软件在数据库查询和搜索中有重要的应用。
2、结构比对
基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性。已有一些算法。
3、蛋白质结构预测,包括2级和3级结构预测,是最重要的课题之一
从方法上来看有演绎法和归纳法两种途径。前者主要是从一些基本原理或假设出发来预测和研究蛋白质的结构和折叠过程。分子力学和分子动力学属这一范畴。后者主要是从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构。同源模建(Homology)和指认(Threading)方法属于这一范畴。虽然经过30余年的努力,蛋白结构预测研究现状远远不能满足实际需要。
4、计算机辅助基因识别(仅指蛋白质编码基因)。最重要的课题之一
基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.这是最重要的课题之一,而且越来越重要。经过20余年的努力,提出了数十种算法,有十种左右重要的算法和相应软件上网提供免费服务。原核生物计算机辅助基因识别相对容易些,结果好一些。从具有较多内含子的真核生物基因组序列中正确识别出起始密码子、剪切位点和终止密码子,是个相当困难的问题,研究现状不能令人满意,仍有大量的工作要做。
5、非编码区分析和DNA语言研究,是最重要的课题之一
在人类基因组中,编码部分进展总序列的3~5%,其它通常称为“垃圾”DNA,其实一点也不是垃圾,只是我们暂时还不知道其重要的功能。分析非编码区DNA序列需要大胆的想象和崭新的研究思路和方法。DNA序列作为一种遗传语言,不仅体现在编码序列之中,而且隐含在非编码序列之中。
6、分子进化和比较基因组学,是最重要的课题之一
早期的工作主要是利用不同物种中同一种基因序列的异同来研究生物的进化,构建进化树。既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化。以上研究已经积累了大量的工作。近年来由于较多模式生物基因组测序任务的完成,为从整个基因组的角度来研究分子进化提供了条件。
7、序列重叠群(Contigs)装配
一般来说,根据现行的测序技术,每次反应只能测出500或更多一些碱基对的序列,这就有一个把大量的较短的序列全体构成了重叠群(Contigs)。逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配。拼接EST数据以发现全长新基因也有类似的问题。已经证明,这是一个NP-完备
性算法问题。
8、遗传密码的起源
遗传密码为什么是现在这样的?这一直是一个谜。一种最简单的理论认为,密码子与氨基酸之间的关系是生物进化历史上一次偶然的事件而造成的,并被固定在现代生物最后的共同祖先里,一直延续至今。不同于这种“冻结”理论,有人曾分别提出过选择优化、化学和历史等三种学说来解释遗传密码。随着各种生物基因组测序任务的完成,为研究遗传密码的起源和检验上述理论的真伪提供了新的素材。
9、基于结构的药物设计。是最重要的课题之一
人类基因组计划的目的之一在于阐明人的约10万种蛋白质的结构、功能、相互作用以及与各种人类疾病之间的关系,寻求各种治疗和预防方法,包括药物治疗。基于生物大分子结构的药物设计是生物信息学中的极为重要的研究领域。为了抑制某些酶或蛋白质的活性,在已知其3级结构的基础上,可以利用分子对接算法,在计算机上设计抑制剂分子,作为候选药物。这种发现新药物的方法有强大的生命力,也有着巨大的经济效益
Ⅳ ATAC-seq专题---生信分析流程
ATAC-seq信息分析流程主要分为以下几个部分:数据质控、序列比对、峰检测、motif分析、峰注释、富集分析,下面将对各部分内容进行展开讲解。
下机数据经过过滤去除接头含量过高或低质量的reads,得到clean reads用于后续分析。常见的trim软件有Trimmomatic、Skewer、fastp等。fastp是一款比较新的软件,使用时可以用--adapter_sequence/--adapter_sequence_r2参数传入接头序列,也可以不填这两个参数,软件会自动识别接头并进行剪切。如:
fastp \
--in1 A1_1.fq.gz \ # read1原始fq文件
--out1 A1_clean_1.fq.gz \ # read1过滤后输出的fq文件
--in2 A1_2.fq.gz \ # read2原始fq文件
--out2 A1_clean_2.fq.gz \ # read2过滤后输出的fq文件
--cut_tail \ #从3’端向5’端滑窗,如果窗口内碱基的平均质量值小于设定阈值,则剪切
--cut_tail_window_size=1 \ #窗口大小
--cut_tail_mean_quality=30 \ #cut_tail参数对应的平均质量阈值
--average_qual=30 \ #如果一条read的碱基平均质量值小于该值即会被舍弃
--length_required=20 \ #经过剪切后的reads长度如果小于该值会被舍弃
fastp软件的详细使用方法可参考:https://github.com/OpenGene/fastp。fastp软件对于trim结果会生成网页版的报告,可参考官网示例http://opengene.org/fastp/fastp.html和http://opengene.org/fastp/fastp.json,也可以用FastQC软件对trim前后的数据质量进行评估,FastQC软件会对单端的数据给出结果,如果是PE测序需要分别运行两次来评估read1和read2的数据质量。
如:
fastqc A1_1.fq.gz
fastqc A1_2.fq.gz
FastQC会对reads从碱基质量、接头含量、N含量、高重复序列等多个方面对reads质量进行评估,生成详细的网页版报告,可参考官网示例:http://www.bioinformatics.babraham.ac.uk/projects/fastqc/good_sequence_short_fastqc.html
经过trim得到的reads可以使用BWA、bowtie2等软件进行比对。首先需要确定参考基因组fa文件,对fa文件建立索引。不同的软件有各自建立索引的命令,BWA软件可以参考如下方式建立索引:
bwa index genome.fa
建立好索引后即可开始比对,ATAC-seq推荐使用mem算法,输出文件经samtools排序输出bam:
bwa mem genome.fa A1_clean_1.fq.gz A1_clean_2.fq.gz
| samtools sort -O bam -T A1 > A1.bam
值得注意的是,在实验过程中质体并不能完全去除,因此会有部分reads比对到质体序列上,需要去除比对到质体上的序列,去除质体序列可以通过samtools提取,具体方法如下:首先将不含质体的染色体名称写到一个chrlist文件中,一条染色体的名称写成一行,然后执行如下命令即可得到去除质体的bam
samtools view -b A1.bam $chrlist > A1.del_MT_PT.bam
用于后续分析的reads需要时唯一比对且去重复的,bwa比对结果可以通过MAPQ值来提取唯一比对reads,可以用picard、sambamba等软件去除p,最终得到唯一比对且去重复的bam文件。
比对后得到的bam文件可以转化为bigWig(bw)格式,通过可视化软件进行展示。deeptools软件可以实现bw格式转化和可视化展示。首先需要在linux环境中安装deeptools软件,可以用以下命令实现bam向bw格式的转换:
bamCoverage -b A1.bam -o A1.bw
此外,可以使用deeptools软件展示reads在特定区域的分布,如:
computeMatrix reference-point \ # reference-pioint表示计算一个参照点附近的reads分布,与之相对的是scale-regions,计算一个区域附近的reads分布
--referencePoint TSS \#以输入的bed文件的起始位置作为参照点
-S A1.bw \ #可以是一个或多个bw文件
-R gene.bed \ #基因组位置文件
-b 3000 \ #计算边界为参考点上游3000bp
-a 3000 \ #计算边界为参考点下游3000bp,与-b合起来就是绘制参考点上下游3000bp以内的reads分布
-o A1.matrix.mat.gz \ #输出作图数据名称
#图形绘制
plotHeatmap \
-m new_A1.matrix.mat.gz \ #上一步生成的作图数据
-out A1.pdf \ # 输出图片名称
绘图结果展示:
MACS2能够检测DNA片断的富集区域,是ATAC-seq数据call peak的主流软件。峰检出的原理如下:首先将所有的reads都向3'方向延伸插入片段长度,然后将基因组进行滑窗,计算该窗口的dynamic λ,λ的计算公式为:λlocal = λBG(λBG是指背景区域上的reads数目),然后利用泊松分布模型的公式计算该窗口的显着性P值,最后对每一个窗口的显着性P值进行FDR校正。默认校正后的P值(即qvalue)小于或者等于0.05的区域为peak区域。需要现在linux环境中安装macs2软件,然后执行以下命令:
macs2 callpeak \
-t A1.uni.dep.bam \ #bam文件
-n A1 \ # 输出文件前缀名
--shift -100 \ #extsize的一半乘以-1
--extsize 200 \ #一般是核小体大小
--call-summits #检测峰顶信息
注:以上参数参考文献(Jie Wang,et.al.2018.“ATAC-Seq analysis reveals a widespread decrease of chromatin accessibility in age-related macular degeneration.”Nature Communications)
ATAC分析得到的peak是染色质上的开放区域,这些染色质开放区域常常预示着转录因子的结合,因此对peak区域进行motif分析很有意义。常见的motif分析软件有homer和MEME。以homer软件为例,首先在linux环境中安装homer,然后用以下命令进行motif分析:
findMotifsGenome.pl \
A1_peaks.bed \ #用于进行motif分析的bed文件
genome.fa \ #参考基因组fa文件
A1 \ #输出文件前缀
-size given \ #使用给定的bed区域位置进行分析,如果填-size -100,50则是用给定bed中间位置的上游100bp到下游50bp的区域进行分析
homer分析motif的原理及结果参见:http://homer.ucsd.e/homer/motif/index.html
根据motif与已知转录因子的富集情况可以绘制气泡图,从而可以看到样本与已知转录因子的富集显着性。
差异peak代表着比较组合染色质开放性有差异的位点,ChIP-seq和ATAC-seq都可以用DiffBind进行差异分析。DiffBind通过可以通过bam文件和peak的bed文件计算出peak区域标准化的readcount,可以选择edgeR、DESeq2等模型进行差异分析。
在科研分析中我们往往需要将peak区域与基因联系起来,也就是通过对peak进行注释找到peak相关基因。常见的peak注释软件有ChIPseeker、homer、PeakAnnotator等。以ChIPseeker为例,需要在R中安装ChIPseeker包和GenomicFeatures包,然后就可以进行分析了。
library(ChIPseeker)
library(GenomicFeatures)
txdb<- makeTxDbFromGFF(‘gene.gtf’)#生成txdb对象,如果研究物种没有已知的TxDb,可以用GenomicFeatures中的函数生成
peakfile <-readPeakFile(‘A1_peaks.narrowPeak’)#导入需要注释的peak文件
peakAnno <- annotatePeak(peakfile,tssRegion=c(-2000, 2000), TxDb=txdb)
# 用peak文件和txdb进行peak注释,这里可以通过tssRegion定义TSS区域的区间
对于peak注释的结果,也可以进行可视化展示,如:
p <- plotAnnoPie(peakAnno)
通过注释得到的peak相关基因可以使用goseq、topGO等R包进行GO富集分析,用kobas进行kegg富集分析,也可以使用DAVID在线工具来完成富集分析。可以通过挑选感兴趣的GO term或pathway进一步筛选候选基因。
Ⅳ 生物信息学对数据的处理一般是一个什么样的过程数据挖掘 数据整合
一、数据挖掘工具分类 数据挖掘工具根据其适用的范围分为两类:专用挖掘工具和通用挖掘工具。 专用数据挖掘工具是针对某个特定领域的问题提供解决方案,在涉及算法的时候充分考虑了数据、需求的特殊性,并作了优化。对任何领域,都可以开发特定的数据挖掘工具。例如,IBM公司的AdvancedScout系统针对NBA的数据,帮助教练优化战术组合。特定领域的数据挖掘工具针对性比较强,只能用于一种应用;也正因为针对性强,往往采用特殊的算法,可以处理特殊的数据,实现特殊的目的,发现的知识可靠度也比较高。 通用数据挖掘工具不区分具体数据的含义,采用通用的挖掘算法,处理常见的数据类型。通用的数据挖掘工具不区分具体数据的含义,采用通用的挖掘算法,处理常见的数据类型。例如,IBM公司Almaden研究中心开发的QUEST系统,SGI公司开发的MineSet系统,加拿大SimonFraser大学开发的DBMiner系统。通用的数据挖掘工具可以做多种模式的挖掘,挖掘什么、用什么来挖掘都由用户根据自己的应用来选择。 二、数据挖掘工具选择需要考虑的问题 数据挖掘是一个过程,只有将数据挖掘工具提供的技术和实施经验与企业的业务逻辑和需求紧密结合,并在实施的过程中不断的磨合,才能取得成功,因此...
Ⅵ 怎么利用生物信息学分析公共数据
生物信息学(Bioinformatics)是生物学与计算机科学以及应用数学等学科相互交叉而
形
成的一门新兴学科。它通过对生物学实验数据的获取、加工、存储、检索与分析,进而
达
到揭示这些数据所蕴含的生物学意义的目的。在推动生物信息学发展的各种动力中,人
类
基因组计划(HGP)和生物医药工业是其中的两个主要力量。
就人类基因组来说,得到序列仅仅是第一步,后一步的工作是所谓后基因组时代 (Post
-
genome Era) 的任务,即收集、整理、检索和分析序列中表达的蛋白质结构与功能的信
息
,找出规律。近几年来在公共数据库中DNA序列数据的数量以每年1.8倍的速度快速增长
,
到1997年底已经超过1.2×109bp。对如此巨量的数据进行存储、分类、检索、比较,并
预
测可能的基因和基因产物的结构和功能,如果没有计算机参与处理,那是不可想象的。
生物医药工业也是推动生物信息学发展的重要动力。HGP所推动的大规模DNA测序也为生
物
医药工业提供了大量可用于新药开发的原材料。有些基因产物可以直接作为药物,而有
些
基因则可以成为药物作用的对象。生物信息学为分子生物学家提供了大量对基因序列进
行
分析的工具,不但可以从资料的获取、基因功能的预测、药物筛选过程中的信息处理等
方
面大大加快新药开发的进程,而且可以大大加快传统的基因发现和研究,因而成为各赢
利
性研究机构和医药公司争夺基因专利的重要工具,这一竞争又反过来极大的刺激了生物
信
息学的发展。
2、研究内容
生物信息学与计算生物学或生物计算有着密切的关系,但又不尽相同,目前归入生物信
息
学研究领域的大致有以下几个方面:
(1)各种生物数据库的建立和管理。这是一切生物信息学工作的基础,通常要有计算机
科
学背景的专业人员与生物学家密切合作。
(2)数据库接口和检索工具的研制。数据库的内容来自万千生物学者的日积月累,最终
又
为生物学者们所用。但不能要求一般生物学工作者具有高深的计算机和网络知识,因此
,
必须发展查询数据库和向库里提供数据的方便接口。这是专业人员才能胜任的工作,通
常
在生物信息中心里进行。
(3)人类基因组计划的实施,配合大规模的DNA自动测序,对信息的采集和处理提出了
空
前的要求。从各种图谱的分析,大量序列片段的拼接组装,寻找基因和预测结构与功能
,
到数据和研究结果的视像化,无不需要高效率的算法和程序。研究新算法、发展方便适
用
的程序,是生物信息学的日常任务。
(4)生物信息学最重要的任务,是从海量数据中提取新知识。这首先是从DNA序列中识
别
编码蛋白质的基因,以及调控基因表达的各种信号。其次,从基因组编码序列翻译出的
蛋
白质序列的数目急剧增加,根本不可能用实验方法一一确定它们的结构和功能。从已经
积
累的数据和知识出发,预测蛋白质的结构和功能,成为常规的研究任务。
(5)DNA芯片和微阵列的发展,把一定组织或生物体内万千基因时空表达的研究提上日
程
.研究基因表达过程中的聚群关系,从中提取调控网络和代谢途径的知识,进而从整体
上
模拟细胞内的全部互相辅合的生化反应,在亚细胞层次理解生命活动。只有掌握已有数
据
、发展崭新算法,才能创造新的知识。这是生物信息学刚刚掀开的新篇章。
Ⅶ 什么是生物信息学
生物信息学
一, 生物信息学发展简介
生物信息学是建立在分子生物学的基础上的,因此,要了解生物信息学,就
必须先对分子生物学的发展有一个简单的了解.研究生物细胞的生物大分子的结
构与功能很早就已经开始,1866年孟德尔从实验上提出了假设:基因是以生物
成分存在[1],1871年Miescher从死的白细胞核中分离出脱氧核糖核酸(DNA),
在Avery和McCarty于1944年证明了DNA是生命器官的遗传物质以前,人们
仍然认为染色体蛋白质携带基因,而DNA是一个次要的角色.
1944年Chargaff发现了着名的Chargaff规律,即DNA中鸟嘌呤的量与胞嘧
定的量总是相等,腺嘌呤与胸腺嘧啶的量相等.与此同时,Wilkins与Franklin
用X射线衍射技术测定了DNA纤维的结构.1953年James Watson 和Francis
Crick在Nature杂志上推测出DNA的三维结构(双螺旋).DNA以磷酸糖链形
成发双股螺旋,脱氧核糖上的碱基按Chargaff规律构成双股磷酸糖链之间的碱基
对.这个模型表明DNA具有自身互补的结构,根据碱基对原则,DNA中贮存的
遗传信息可以精确地进行复制.他们的理论奠定了分子生物学的基础.
DNA双螺旋模型已经预示出了DNA复制的规则,Kornberg于1956年从大
肠杆菌(E.coli)中分离出DNA聚合酶I(DNA polymerase I),能使4种dNTP连接
成DNA.DNA的复制需要一个DNA作为模板.Meselson与Stahl(1958)用实验
方法证明了DNA复制是一种半保留复制.Crick于1954年提出了遗传信息传递
的规律,DNA是合成RNA的模板,RNA又是合成蛋白质的模板,称之为中心
法则(Central dogma),这一中心法则对以后分子生物学和生物信息学的发展都起
到了极其重要的指导作用.
经过Nirenberg和Matthai(1963)的努力研究,编码20氨基酸的遗传密码
得到了破译.限制性内切酶的发现和重组DNA的克隆(clone)奠定了基因工程
的技术基础.
正是由于分子生物学的研究对生命科学的发展有巨大的推动作用,生物信息
学的出现也就成了一种必然.
2001年2月,人类基因组工程测序的完成,使生物信息学走向了一个高潮.
由于DNA自动测序技术的快速发展,DNA数据库中的核酸序列公共数据量以每
天106bp速度增长,生物信息迅速地膨胀成数据的海洋.毫无疑问,我们正从一
个积累数据向解释数据的时代转变,数据量的巨大积累往往蕴含着潜在突破性发
现的可能,"生物信息学"正是从这一前提产生的交叉学科.粗略地说,该领域
的核心内容是研究如何通过对DNA序列的统计计算分析,更加深入地理解DNA
序列,结构,演化及其与生物功能之间的关系,其研究课题涉及到分子生物学,
分子演化及结构生物学,统计学及计算机科学等许多领域.
生物信息学是内涵非常丰富的学科,其核心是基因组信息学,包括基因组信
息的获取,处理,存储,分配和解释.基因组信息学的关键是"读懂"基因组的核
苷酸顺序,即全部基因在染色体上的确切位置以及各DNA片段的功能;同时在
发现了新基因信息之后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的
功能进行药物设计[2].了解基因表达的调控机理也是生物信息学的重要内容,根
据生物分子在基因调控中的作用,描述人类疾病的诊断,治疗内在规律.它的研
究目标是揭示"基因组信息结构的复杂性及遗传语言的根本规律",解释生命的遗
传语言.生物信息学已成为整个生命科学发展的重要组成部分,成为生命科学研
究的前沿.
二, 生物信息学的主要研究方向
生物信息学在短短十几年间,已经形成了多个研究方向,以下简要介绍一些
主要的研究重点.
1,序列比对(Sequence Alignment)
序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似
性.从生物学的初衷来看,这一问题包含了以下几个意义[3]:
从相互重叠的序列片断中重构DNA的完整序列.
在各种试验条件下从探测数据(probe data)中决定物理和基因图
存贮,遍历和比较数据库中的DNA序列
比较两个或多个序列的相似性
在数据库中搜索相关序列和子序列
寻找核苷酸(nucleotides)的连续产生模式
找出蛋白质和DNA序列中的信息成分
序列比对考虑了DNA序列的生物学特性,如序列局部发生的插入,删除(前
两种简称为indel)和替代,序列的目标函数获得序列之间突变集最小距离加权
和或最大相似性和,对齐的方法包括全局对齐,局部对齐,代沟惩罚等.两个
序列比对常采用动态规划算法,这种算法在序列长度较小时适用,然而对于海
量基因序列(如人的DNA序列高达109bp),这一方法就不太适用,甚至采用算
法复杂性为线性的也难以奏效.因此,启发式方法的引入势在必然,着名的
BALST和FASTA算法及相应的改进方法均是从此前提出发的.
2, 蛋白质结构比对和预测
基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性.
蛋白质的结构与功能是密切相关的,一般认为,具有相似功能的蛋白质结构一般
相似.蛋白质是由氨基酸组成的长链,长度从50到1000~3000AA(Amino Acids),
蛋白质具有多种功能,如酶,物质的存贮和运输,信号传递,抗体等等.氨基酸
的序列内在的决定了蛋白质的3维结构.一般认为,蛋白质有四级不同的结构.
研究蛋白质结构和预测的理由是:医药上可以理解生物的功能,寻找docking
drugs的目标,农业上获得更好的农作物的基因工程,工业上有利用酶的合成.
直接对蛋白质结构进行比对的原因是由于蛋白质的3维结构比其一级结构
在进化中更稳定的保留,同时也包含了较AA序列更多的信息.
蛋白质3维结构研究的前提假设是内在的氨基酸序列与3维结构一一对应
(不一定全真),物理上可用最小能量来解释.
从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构.同
源建模(homology modeling)和指认(Threading)方法属于这一范畴.同源建模用
于寻找具有高度相似性的蛋白质结构(超过30%氨基酸相同),后者则用于比较
进化族中不同的蛋白质结构.
然而,蛋白结构预测研究现状还远远不能满足实际需要.
3, 基因识别,非编码区分析研究.
基因识别的基本问题是给定基因组序列后,正确识别基因的范围和在基因组
序列中的精确位置.非编码区由内含子组成(introns),一般在形成蛋白质后被丢
弃,但从实验中,如果去除非编码区,又不能完成基因的复制.显然,DNA序
列作为一种遗传语言,既包含在编码区,又隐含在非编码序列中.分析非编码
区DNA序列目前没有一般性的指导方法.
在人类基因组中,并非所有的序列均被编码,即是某种蛋白质的模板,已
完成编码部分仅占人类基因总序列的3~5%,显然,手工的搜索如此大的基因序
列是难以想象的.
侦测密码区的方法包括测量密码区密码子(codon)的频率,一阶和二阶马尔
可夫链,ORF(Open Reading Frames),启动子(promoter)识别,HMM(Hidden
Markov Model)和GENSCAN,Splice Alignment等等.
4, 分子进化和比较基因组学
分子进化是利用不同物种中同一基因序列的异同来研究生物的进化,构建进
化树.既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相
关蛋白质的结构比对来研究分子进化,其前提假定是相似种族在基因上具有相似
性.通过比较可以在基因组层面上发现哪些是不同种族中共同的,哪些是不同的.
早期研究方法常采用外在的因素,如大小,肤色,肢体的数量等等作为进化
的依据.近年来较多模式生物基因组测序任务的完成,人们可从整个基因组的角
度来研究分子进化.在匹配不同种族的基因时,一般须处理三种情况:
Orthologous: 不同种族,相同功能的基因
Paralogous: 相同种族,不同功能的基因
Xenologs: 有机体间采用其他方式传递的基因,如被病毒注入的基因.
这一领域常采用的方法是构造进化树,通过基于特征(即DNA序列或蛋白
质中的氨基酸的碱基的特定位置)和基于距离(对齐的分数)的方法和一些传统
的聚类方法(如UPGMA)来实现.
5, 序列重叠群(Contigs)装配
根据现行的测序技术,每次反应只能测出500 或更多一些碱基对的序列,
如人类基因的测量就采用了短枪(shortgun)方法,这就要求把大量的较短的序列
全体构成了重叠群(Contigs).逐步把它们拼接起来形成序列更长的重叠群,直
至得到完整序列的过程称为重叠群装配.从算法层次来看,序列的重叠群是一个
NP-完全问题.
6, 遗传密码的起源
通常对遗传密码的研究认为,密码子与氨基酸之间的关系是生物进化历史上
一次偶然的事件而造成的,并被固定在现代生物的共同祖先里,一直延续至今.
不同于这种"冻结"理论,有人曾分别提出过选择优化,化学和历史等三种学说
来解释遗传密码.随着各种生物基因组测序任务的完成,为研究遗传密码的起源
和检验上述理论的真伪提供了新的素材.
7, 基于结构的药物设计
人类基因工程的目的之一是要了解人体内约10万种蛋白质的结构,功能,
相互作用以及与各种人类疾病之间的关系,寻求各种治疗和预防方法,包括药物
治疗.基于生物大分子结构及小分子结构的药物设计是生物信息学中的极为重要
的研究领域.为了抑制某些酶或蛋白质的活性,在已知其蛋白质3级结构的基础
上,可以利用分子对齐算法,在计算机上设计抑制剂分子,作为候选药物.这一
领域目的是发现新的基因药物,有着巨大的经济效益.
8, 其他
如基因表达谱分析,代谢网络分析;基因芯片设计和蛋白质组学数据分析等,
逐渐成为生物信息学中新兴的重要研究领域;在学科方面,由生物信息学衍生的
学科包括结构基因组学,功能基因组学,比较基因组学,蛋白质学,药物基因组
学,中药基因组学,肿瘤基因组学,分子流行病学和环境基因组学.
从现在的发展不难看出,基因工程已经进入了后基因组时代.我们也有应对
与生物信息学密切相关的如机器学习,和数学中可能存在的误导有一个清楚的认
识.
三, 生物信息学与机器学习
生物信息的大规模给数据挖掘提出了新课题和挑战,需要新的思想的加入.
常规的计算机算法仍可以应用于生物数据分析中,但越来越不适用于序列分析问
题.究竟原因,是由于生物系统本质上的模型复杂性及缺乏在分子层上建立的完
备的生命组织理论.
西蒙曾给出学习的定义:学习是系统的变化,这种变化可使系统做相同工作
时更有效[4].机器学习的目的是期望能从数据中自动地获得相应的理论,通过采
用如推理,模型拟合及从样本中学习,尤其适用于缺乏一般性的理论,"噪声"
模式,及大规模数据集.因此,机器学习形成了与常规方法互补的可行的方法.
机器学习使得利用计算机从海量的生物信息中提取有用知识,发现知识成为可能
[5].
机器学习方法在大样本,多向量的数据分析工作中发挥着日益重要的作用,
而目前大量的基因数据库处理需要计算机能自动识别,标注,以避免即耗时又花
费巨大的人工处理方法.早期的科学方法—观测和假设----面对高数据的体积,
快速的数据获取率和客观分析的要求---已经不能仅依赖于人的感知来处理了.因
而,生物信息学与机器学习相结合也就成了必然.
机器学习中最基本的理论框架是建立在概率基础上的,从某种意义来说,是
统计模型拟合的延续,其目的均为提取有用信息.机器学习与模式识别和统计推
理密切相关.学习方法包括数据聚类,神经网络分类器和非线性回归等等.隐马
尔可夫模型也广泛用于预测DNA的基因结构.目前研究重心包括:1)观测和
探索有趣的现象.目前ML研究的焦点是如何可视化和探索高维向量数据.一般
的方法是将其约简至低维空间,如常规的主成分分析(PCA),核主成分分析
(KPCA),独立成分分析(Independent component analysis),局部线性嵌套(Locally
Linear embedding).2)生成假设和形式化模型来解释现象[6].大多数聚类方法可
看成是拟合向量数据至某种简单分布的混合.在生物信息学中聚类方法已经用于
microarray数据分析中,癌症类型分类及其他方向中.机器学习也用于从基因数
据库中获得相应的现象解释.
机器学习加速了生物信息学的进展,也带了相应的问题.机器学习方法大多
假定数据符合某种相对固定的模型,而一般数据结构通常是可变的,在生物信息
学中尤其如此,因此,有必要建立一套不依赖于假定数据结构的一般性方法来寻
找数据集的内在结构.其次,机器学习方法中常采用"黑箱"操作,如神经网络
和隐马尔可夫模型,对于获得特定解的内在机理仍不清楚.
四, 生物信息学的数学问题
生物信息学中数学占了很大的比重.统计学,包括多元统计学,是生物信息
学的数学基础之一;概率论与随机过程理论,如近年来兴起的隐马尔科夫链模型
(HMM),在生物信息学中有重要应用;其他如用于序列比对的运筹学;蛋白质
空间结构预测和分子对接研究中采用的最优化理论;研究DNA超螺旋结构的拓
扑学;研究遗传密码和DNA序列的对称性方面的群论等等.总之,各种数学理
论或多或少在生物学研究中起到了相应的作用.
但并非所有的数学方法在引入生物信息学中都能普遍成立的,以下以统计学
和度量空间为例来说明.
1, 统计学的悖论
数学的发展是伴随悖论而发展的.对于进化树研究和聚类研究中最显着的悖
论莫过于均值了,如图1:
图1 两组同心圆的数据集
图1是两组同心圆构成的数据集,显然,两组数据集的均值均在圆点,这也
就说明了要采用常规的均值方法不能将这两类分开,也表明均值并不能带来更多
的数据的几何性质.那么,如果数据呈现类似的特有分布时,常有的进化树算法
和聚类算法(如K-均值)往往会得错误的结论.统计上存在的陷阱往往是由于
对数据的结构缺乏一般性认识而产生的.
2, 度量空间的假设
在生物信息学中,进化树的确立,基因的聚类等都需要引入度量的概念.举
例来说,距离上相近或具有相似性的基因等具有相同的功能,在进化树中满足分
值最小的具有相同的父系,这一度量空间的前提假设是度量在全局意义下成立.
那么,是否这种前提假设具有普适性呢
我们不妨给出一般的描述:假定两个向量为A,B,其中,
,则在假定且满足维数间线性无关的前提下,两个
向量的度量可定义为:
(1)
依据上式可以得到满足正交不变运动群的欧氏度量空间,这也是大多数生物信息
学中常采用的一般性描述,即假定了变量间线性无关.
然而,这种假设一般不能正确描述度量的性质,尤其在高维数据集时,不考
虑数据变量间的非线性相关性显然存在问题,由此,我们可以认为,一个正确的
度量公式可由下式给出:
(2)
上式中采用了爱因斯坦和式约定,描述了变量间的度量关系.后者在满足
(3)
时等价于(1),因而是更一般的描述,然而问题在于如何准确描述变量间的非线
性相关性,我们正在研究这个问题.
五, 几种统计学习理论在生物信息学中应用的困难
生物信息学中面对的数据量和数据库都是规模很大的,而相对的目标函数却
一般难以给出明确的定义.生物信息学面临的这种困难,可以描述成问题规模的
巨大以及问题定义的病态性之间的矛盾,一般从数学上来看,引入某个正则项来
改善性能是必然的[7].以下对基于这一思想产生的统计学习理论[8],Kolmogorov
复杂性[98]和BIC(Bayesian Information Criterion)[109]及其存在的问题给出简要介
绍.
支持向量机(SVM)是近来较热门的一种方法,其研究背景是Vapnik的统计
学习理论,是通过最大化两个数据集的最大间隔来实现分类,对于非线性问题则
采用核函数将数据集映射至高维空间而又无需显式描述数据集在高维空间的性
质,这一方法较之神经方法的好处在于将神经网络隐层的参数选择简化为对核函
数的选择,因此,受到广泛的注意.在生物信息学中也开始受到重视,然而,核
函数的选择问题本身是一个相当困难的问题,从这个层次来看,最优核函数的选
择可能只是一种理想,SVM也有可能象神经网络一样只是机器学习研究进程中
又一个大气泡.
Kolmogorov复杂性思想与统计学习理论思想分别从不同的角度描述了学习
的性质,前者从编码的角度,后者基于有限样本来获得一致收敛性.Kolmogorov
复杂性是不可计算的,因此由此衍生了MDL原则(最小描述长度),其最初只
适用于离散数据,最近已经推广至连续数据集中,试图从编码角度获得对模型参
数的最小描述.其缺陷在于建模的复杂性过高,导致在大数据集中难以运用.
BIC准则从模型复杂性角度来考虑,BIC准则对模型复杂度较高的给予大的
惩罚,反之,惩罚则小,隐式地体现了奥卡姆剃刀("Occam Razor")原理,近
年也广泛应用于生物信息学中.BIC准则的主要局限是对参数模型的假定和先验
的选择的敏感性,在数据量较大时处理较慢.因此,在这一方面仍然有许多探索
的空间.
六, 讨论与总结
人类对基因的认识,从以往的对单个基因的了解,上升到在整个基因组水平
上考察基因的组织结构和信息结构,考察基因之间在位置,结构和功能上的相互
关系.这就要求生物信息学在一些基本的思路上要做本质的观念转变,本节就这
些问题做出探讨和思索.
启发式方法:
Simond在人类的认知一书中指出,人在解决问题时,一般并不去寻找最优
的方法,而只要求找到一个满意的方法.因为即使是解决最简单的问题,要想得
到次数最少,效能最高的解决方法也是非常困难的.最优方法和满意方法之间的
困难程度相差很大,后者不依赖于问题的空间,不需要进行全部搜索,而只要能
达到解决的程度就可以了.正如前所述,面对大规模的序列和蛋白质结构数据集,
要获得全局结果,往往是即使算法复杂度为线性时也不能够得到好的结果,因此,
要通过变换解空间或不依赖于问题的解空间获得满意解,生物信息学仍需要人工
智能和认知科学对人脑的进一步认识,并从中得到更好的启发式方法.
问题规模不同的处理:
Marvin Minsky在人工智能研究中曾指出:小规模数据量的处理向大规模数
据量推广时,往往并非算法上的改进能做到的,更多的是要做本质性的变化.这
好比一个人爬树,每天都可以爬高一些,但要想爬到月球,就必须采用其他方法
一样.在分子生物学中,传统的实验方法已不适应处理飞速增长的海量数据.同
样,在采用计算机处理上,也并非依靠原有的计算机算法就能够解决现有的数据
挖掘问题.如在序列对齐(sequence Alignment)问题上,在小规模数据中可以采用
动态规划,而在大规模序列对齐时不得不引入启发式方法,如BALST,FASTA.
乐观中的隐扰
生物信息学是一门新兴学科,起步于20世纪90年代,至今已进入"后基因
组时代",目前在这一领域的研究人员均呈普遍乐观态度,那么,是否存在潜在
的隐扰呢
不妨回顾一下早期人工智能的发展史[11],在1960年左右,西蒙曾相信不出
十年,人类即可象完成登月一样完成对人的模拟,造出一个与人智能行为完全相
同的机器人.而至今为止,这一诺言仍然遥遥无期.尽管人工智能研究得到的成
果已经渗入到各个领域,但对人的思维行为的了解远未完全明了.从本质来看,
这是由于最初人工智能研究上定位错误以及没有从认识论角度看清人工智能的
本质造成的;从研究角度来看,将智能行为还原成一般的形式化语言和规则并不
能完整描述人的行为,期望物理科学的成功同样在人工智能研究中适用并不现
实.
反观生物信息学,其目的是期望从基因序列上解开一切生物的基本奥秘,从
结构上获得生命的生理机制,这从哲学上来看是期望从分子层次上解释人类的所
有行为和功能和致病原因.这类似于人工智能早期发展中表现的乐观行为,也来
自于早期分子生物学,生物物理和生物化学的成就.然而,从本质上来讲,与人
工智能研究相似,都是希望将生命的奥秘还原成孤立的基因序列或单个蛋白质的
功能,而很少强调基因序列或蛋白质组作为一个整体在生命体中的调控作用.我
们因此也不得不思考,这种研究的最终结果是否能够支撑我们对生物信息学的乐
观呢 现在说肯定的话也许为时尚早.
综上所述,不难看出,生物信息学并不是一个足以乐观的领域,究竟原因,
是由于其是基于分子生物学与多种学科交叉而成的新学科,现有的形势仍表现为
各种学科的简单堆砌,相互之间的联系并不是特别的紧密.在处理大规模数据方
面,没有行之有效的一般性方法;而对于大规模数据内在的生成机制也没有完全
明了,这使得生物信息学的研究短期内很难有突破性的结果.那么,要得到真正
的解决,最终不能从计算机科学得到,真正地解决可能还是得从生物学自身,从
数学上的新思路来获得本质性的动力.
毫无疑问,正如Dulbecco1986年所说:"人类的DNA序列是人类的真谛,
这个世界上发生的一切事情,都与这一序列息息相关".但要完全破译这一序列
以及相关的内容,我们还有相当长的路要走.
(来源 ------[InfoBio.org | 生物信息学研讨组])http://www.infobio.org
生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。其研究重点主要体现在基因组学(Genomics)和蛋白学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。
生物信息学是一门利用计算机技术研究生物系统之规律的学科。
目前的生物信息学基本上只是分子生物学与信息技术(尤其是因特网技术)的结合体。生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。
1990年代以来,伴随着各种基因组测序计划的展开和分子结构测定技术的突破和Internet的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。对生物信息学工作者提出了严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?
生物信息学的另一个挑战是从蛋白质的氨基酸序列预测蛋白质结构。这个难题已困扰理论生物学家达半个多世纪,如今找到问题答案要求正变得日益迫切。诺贝尔奖获得者W. Gilbert在1991年曾经指出:“传统生物学解决问题的方式是实验的。现在,基于全部基因都将知晓,并以电子可操作的方式驻留在数据库中,新的生物学研究模式的出发点应是理论的。一个科学家将从理论推测出发,然后再回到实验中去,追踪或验证这些理论假设”。
生物信息学的主要研究方向: 基因组学 - 蛋白质组学 - 系统生物学 - 比较基因组学
Ⅷ 列举常用的生物信息学数据库及序列对比常用软件及特点
一般来说所用的分析工具有在线跟下载的 下面简要列举一些常用在线软件的使用 1、使用VecScreen工具,分析下列未知序列,输出序列长度、载体序列的区域、可能使用的克隆载体都有哪些。一、步骤:
打开google 首页,搜索VecScreen,进入VecScreen首页,复制序列,运行,View report。
二、结果:
输出序列长度918bp,
载体序列的区域456bp——854bp.
克隆载体:M13mp18 phage,pGEM-13Zf(+),pBR322,pRKW2。
2、使用相应工具,分析下列未知序列的重复序列情况,输出重复序列的区域、包含的所有重复序列的类型、重复序列的总长度及Masked Sequence。
一、步骤:
进入google首页,进入ICBI主页,对序列进行BLAST。得出序列是human的。
进入google首页,搜索RepeatMasker,进入RepeatMasker主页,进入RepeatMasking,复制序列,DNA source选择human,运行!点击超链接,在结果中选择
Annotation File :RM2sequpload_1287631711.out.html
3、使用CpGPlot/CpGReport/Isochore工具,分析下列未知序列,输出CpG岛的长度、区域、GC数量、所占的百分比及Obs/Exp值。一、步骤:
进入google首页,搜索CpGPlot,进入CpGPlot主页,program中选择cpgreport复制序列,运行!
二、结果:
CpG岛的长度:385bp
区域:48——432;
GC数量:Sum C+G=297,百分数=77.14
Obs/Exp:1.01
4、预测下面序列的启动子,输出可能的启动子序列及相应的位置。一、步骤:
进入google首页,进入ICBI主页,对序列进行BLAST。得出序列是human的
进入google首页,搜索Neural Network Promoter Prediction,进入主页,复制序列,选择eukaryote,运行!
二、结果:
位置:711—761 ,1388—1438,1755—1805;
5、运用Splice Site Prediction工具分析下面序列,分别输出内含子-外显子剪接位点给体和受体的区域及剪接处位置的碱基。一、步骤:
进入google首页,进入ICBI主页,对序列进行BLAST。得出序列是human的
进入google首页,搜索Splice Site Prediction,进入主页,复制序列。Organism选择Human or other。其他默认,运行!
二、结果:
供体:
受体:
6、对下面序列进行六框翻译,利用GENESCAN综合分析(首先确定给定序列的物种来源)哪个ORF是正确的,输出六框翻译(抓图)和GENESCAN结果(包括predicted genes/exons 和 predicted peptide sequence(s) 两个部分)。一、步骤:
进入google首页,进入ICBI主页,对序列进行BLAST。得出序列是Zea的
进入google首页;搜索NCBI,进入主页,选择all resources(A~Z),选择O,选择ORF finder。复制序列,默认,运行!
二、结果:ORF图
三、步骤:进入google首页,搜索GENESCAN,进入主页,Organism:Maize, ,其他默认,运行!
四、结果:
G7、进入REBASE限制性内切酶数据库,输出AluI、MboI、EcoI三种内酶的Recognition Sequence和Type。
一、步骤:进入google首页,google in English,搜索REBASE,进入主页, 分别输入AluI、MboI、EcoI,运行!
在MboI中选择第一个,EcoI选择第二个。
二、结果:
ENSCAN图
8、使用引物设计工具,针对下列未知序列设计一对引物,要求引物长度为20-25bp,扩增产物长度300-500bp,退火温度为50-60℃。请写出选择的一对引物(Forward Primer and Reverse Primer)、及相应的GC含量、引物的位点、Tm值和产物长度。一、步骤:进入google首页,搜索genefisher,进入主页,复制fasta格式,chechk input, sunmit, ; ;设置一下引物长度为20-25bp,扩增产物长度300-500bp,退火温度为50-60℃; 。
二、结果:
GC含量:
引物的位点:
Tm值:
产物长度:。
9、将下面的序列用NEBcutter 2.0工具分析,用产生平末端及有四个酶切位点的酶进行酶切,并用抓图提交胶图(view gel),要求1.4% agarose和Marker为100bp DNA Ladder。
一、步骤:
进入google首页,进入ICBI主页,对序列进行BLAST,得知是linear。
进入google首页,搜索NEBcutter 2.0,进入主页,选择linear,运行!选择custom digest, ,把“1”改为“4”,选择平末端,后digest。View gel。选择1.4% agarose和Marker为100bp。
二、结果:
然后就是蛋白质的了一般都在expasy里swiss-prot 适用于检索的 compute pi/mw 求理论分子量 分子量 protparam物理化学性质 protscale亲水性疏水性 peptidemass分析蛋白酶和化学试剂处理后的内切产物
NCBI(www.ncbi.nlm.nih.gov)-GenBank数据库
数据库相似性搜索——核酸序列与核酸数据库比较(BLASTN)
蛋白质序列与数据库中蛋白质序列比较(BLASTP)
两序列比对(Align two sequences)
DNA序列分析——ORF Finder(www.ncbi.nlm.nih.gov/gorf/gorf.html)
分析实验序列外显子部分——GENSCAN(http://genes.mit.e/GENSCAN.html)
分析实验序列的可能酶切位点——NEBcutter2.0 (http://tools.neb.com/NEBcutter2/index.php)
注: Custom digest -- view gel
限制性内切酶数据库——REBASE(http://rebase.neb.com/rebase/rebase.html)
设计引物扩增实验序列——Genefisher
Primer 3
蛋白质序列分析及结构预测:
1.预测蛋白质的分子量及等电点:ExPASy(Compute pI/Mw)
2.分析蛋白质的基本物理化学性质:ExPASy(ProtParam)
3.分析蛋白质的亲水性和疏水性:ExPASy(ProtScale)
4.分析蛋白质在各种蛋白酶和各种化学试剂处理后的内切产物:ExPASy(PeptideMass) [* :kinase K]
5.分析蛋白质的信号肽:ExPASy(SignalP)
6.预测蛋白质的二级结构:ExPASy(Jpred 3)
多物种分子系统发育分析:EMBL(www.ebi.ac.uk/embl/)--Toolbox--Clustal2W
人脂联素蛋白质序列:NP_004788
人类胰岛素生长因子IB前体:P05019
Ⅸ 生物信息学主要处理和分析哪些高通量数据类型
高通量数据类型主要包括基因芯片和基因测序,我估计你想知道的是具体的内容。
具体的内容其实是指的高通量测序技术的应用,例如microarray,RNA-Seq,Exome-Seq,Target-Seq,Whole-genome-sequencing,宏基因组,16S RNA,microRNA,lncRNA测序等。
研究的问题就更五花八门了,像现在精准医疗的概念很火,主要是以基因测序为入口,后面的应用,例如产前诊断,孕前诊断等,甚至像亲子鉴定,肿瘤靶标等都可以通过生物信息学的分析手段来搞定。
生物信息分析分为几个层次,第一个层次基本上就是用别人做好的成熟软件,直接分析出你要的结果,再深入就是你会根据问题找到更合适的一些软件或者模块,自己组建一些分析流程,包括自己写一些辅助的程序脚本,更深入的层次就是市面上没有符合你要求的软件或者统计算法,你依据自己的需求,定制自己的分析过程,自己从头开始写基础程序,写统计算法,写模型等。到了这个程度就没有那么多限制了,主要比的是个人的思维想法以及眼界开阔程度。
现在也很多生物信息的分析方法应用在大数据的各个领域。本质是各种统计思维方法的实现,找出特定的模式结果。
Ⅹ 生物信息学软件数据库的运用
首先可以拿这个序列做blastn和blastx,在NCBI网站上:http://blast.ncbi.nlm.nih.gov/Blast.cgi;
根据blastn或者blastx的结果,根据序列比对结果判断这个DNA序列是编码蛋白质的基因还是其他的类型的DNA;
如果是编码蛋白质的基因序列的话,根据blastx结果,可以找到编码区,并获得它编码的氨基酸序列,也可以得到其他一些信息。
如果是非编码区的DNA序列的话,那就根据blastn的比对结果判断这个序列的来源。