㈠ 数据分析的流程是什么
1、明确分析的目的,提出问题。只有弄清楚了分析的目的是什么,才能准确定位分析因子,提出有价值的问题,提供清晰的指引方向。
2、数据采集。收集原始数据,数据来源可能是丰富多样的,一般有数据库、互联网、市场调查等。具体办法可以通过加入“埋点”代码,或者使用第三方的数据统计工具。
3、数据处理。对收集到的原始数据进行数据加工,主要包括数据清洗、数据分组、数据检索、数据抽取等处理方法。
4、数据探索。通过探索式分析检验假设值的形成方式,在数据之中发现新的特征,对整个数据集有个全面认识,以便后续选择何种分析策略。
5、分析数据。数据整理完毕,就要对数据进行综合分析和相关分析,需要对产品、业务、技术等了如指掌才行,常常用到分类、聚合等数据挖掘算法。Excel是最简单的数据分析工具,专业数据分析工具有R语言、Python等。
6、得到可视化结果。借助可视化数据,能有效直观地表述想要呈现的信息、观点和建议,比如金字塔图、矩阵图、漏斗图、帕累托图等,同时也可以使用报告等形式与他人交流。
㈡ 数据分析的基本流程是什么
数据分析有:分类分析,矩阵分析,漏斗分析,相关分析,逻辑树分析,趋势分析,行为轨迹分析,等等。 我用HR的工作来举例,说明上面这些分析要怎么做,才能得出洞见。
01) 分类分析
比如分成不同部门、不同岗位层级、不同年龄段,来分析人才流失率。比如发现某个部门流失率特别高,那么就可以去分析。
02) 矩阵分析
比如公司有价值观和能力的考核,那么可以把考核结果做出矩阵图,能力强价值匹配的员工、能力强价值不匹配的员工、能力弱价值匹配的员工、能力弱价值不匹配的员工各占多少比例,从而发现公司的人才健康度。
03) 漏斗分析
比如记录招聘数据,投递简历、通过初筛、通过一面、通过二面、通过终面、接下Offer、成功入职、通过试用期,这就是一个完整的招聘漏斗,从数据中,可以看到哪个环节还可以优化。
04) 相关分析
比如公司各个分店的人才流失率差异较大,那么可以把各个分店的员工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、员工年龄、管理人员年龄等)要素进行相关性分析,找到最能够挽留员工的关键因素。
05) 逻辑树分析
比如近期发现员工的满意度有所降低,那么就进行拆解,满意度跟薪酬、福利、职业发展、工作氛围有关,然后薪酬分为基本薪资和奖金,这样层层拆解,找出满意度各个影响因素里面的变化因素,从而得出洞见。
06) 趋势分析
比如人才流失率过去12个月的变化趋势。
07)行为轨迹分析
比如跟踪一个销售人员的行为轨迹,从入职、到开始产生业绩、到业绩快速增长、到疲惫期、到逐渐稳定。
㈢ 数据分析工作流程有哪些
1、数据获取
从字面的意思上讲,就是获取数据。数据获取看似简单,但是需要把握对问题的商业理解,转化成数据问题来解决,直白点讲就是需要哪些数据,从哪些角度来分析,界定问题后,再进行数据采集。此环节,需要数据分析师具备结构化的逻辑思维。
2、数据处理
数据的处理需要掌握有效率的工具,这些工具有很多,比如Excel、SQL等等,Excel及高端技能:基本操作、函数公式、数据透视表、VBA程序开发。
3、分析数据
分析数据往往需要各类统计分析模型,如关联规则、聚类、分类、预测模型等等。因此,熟练掌握一些统计分析工具不可免。我们可学习SPSS,而SPSS不用编程,简单易学。十分适合新手,同时经典挖掘软件,需要编程。而R语言开源软件,新流行,对非结构化数据处理效率上更高,需编程。
4、数据可视化
就目前而言,很多数据分析工具已经涵盖了数据可视化部分,只需要把数据结果进行有效的呈现和演讲汇报就可以了。你所做的前期一系列的工作展示给你的领导。
㈣ 数据分析的五个步骤
我们将数据分析过程组织为五个步骤:提问、整理、探索、得出结论和传达结果。以下是关键要点的概述,但你可以选择跳过。我们将在后面的部分中演练每一步,所以你将很快熟悉整个过程。
第 1 步:提问
你要么获取一批数据,然后根据它提问,要么先提问,然后根据问题收集数据。在这两种情况下,好的问题可以帮助你将精力集中在数据的相关部分,并帮助你得出有洞察力的分析。
第 2 步:整理数据
你通过三步来获得所需的数据:收集,评估,清理。你收集所需的数据来回答你的问题,评估你的数据来识别数据质量或结构中的任何问题,并通过修改、替换或删除数据来清理数据,以确保你的数据集具有最高质量和尽可能结构化。
第 3 步:执行 EDA(探索性数据分析)
你可以探索并扩充数据,以最大限度地发挥你的数据分析、可视化和模型构建的潜力。探索数据涉及在数据中查找模式,可视化数据中的关系,并对你正在使用的数据建立直觉。经过探索后,你可以删除异常值,并从数据中创建更好的特征,这称为特征工程。
第 4 步:得出结论(或甚至是做出预测)
这一步通常使用机器学习或推理性统计来完成,不在本课程范围内,本课的重点是使用描述性统计得出结论。
第 5 步:传达结果
你通常需要证明你发现的见解及传达意义。或者,如果你的最终目标是构建系统,则通常需要分享构建的结果,解释你得出设计结论的方式,并报告该系统的性能。传达结果的方法有多种:报告、幻灯片、博客帖子、电子邮件、演示文稿,甚至对话。数据可视化总会给你呈现很大的价值。
㈤ 数据分析的流程是什么
①拆分工作项
运营是一个包含了诸多琐碎事项的工作,运营人员要会拆分自己的工作项,并根据不同工作项的特点有针对地对特定的运营数据进行分析,才能事半功倍。
②建立指标体系
拆分完工作项后,针对每一个工作项有不同的指标,我们要根据工作项的特点进一步拆分和细化运营数据指标,然后通过对每一个指标的分析来判断运营问题并不断优化运营方案。拆分的维度可以按照数据的包含结构,也可以按照每一个工作项包含的子项进行拆分。
③细化分析目标
细化分析目标是指根据运营目标,确定能够进行优化的数据点。
④提取处理数据
在提取数据这里涉及一个数据埋点的问题,在产品设计的早期,运营人员就要规划好运营关键点,列出埋点清单提交给开发人员,以免后期运营过程中想要查看某一个数据但却没有数据记录信息。
⑤数据分析总结
一般来说,要说明问题出现在什么地方,哪些地方是可以进行优化改进的。
⑥反馈及投入应用
仔细观察可以发现,以上数据分析流程实际上形成了一个闭环。总结汇报完毕,我们需要将得出的结论运用到实践中,继续观察数据的变化并不断优化我们的运营策略。
㈥ 完整的数据分析包括哪些步骤
完整的数据分析主要包括了六大步骤,它们依次为:分析设计、数据收集、数据处理、数据分析、数据展现、报告撰写等,所以也叫数据分析六步曲。
①分析设计
首先是明确数据分析目的,只有明确目的,数据分析才不会偏离方向,否则得出的数据分析结果不仅没有指导意义,亦即目的引导。
②数据收集
数据收集是按照确定的数据分析框架,收集相关数据的过程,它为数据分析提供了素材和依据。
③数据处理
数据处理是指对采集到的数据进行加工整理,形成适合数据分析的样式,保证数据的一致性和有效性。它是数据分析前必不可少的阶段。
④数据分析
数据分析是指用适当的分析方法及工具,对收集来的数据进行分析,提取有价值的信息,形成有效结论的过程。
⑤数据展现
一般情况下,数据是通过表格和图形的方式来呈现的,即用图表说话。
常用的数据图表包括饼图、柱形图、条形图、折线图、散点图、雷达图等,当然可以对这些图表进一步整理加工,使之变为我们所需要的图形,例如金字塔图、矩阵图、瀑布图、漏斗图、帕雷托图等。
⑥报告撰写
数据分析报告其实是对整个数据分析过程的一个总结与呈现。通过报告,把数据分析的起因、过程、结果及建议完整地呈现出来,以供决策者参考。所以数据分析报告是通过对数据全方位的科学分析来评估企业运营质量,为决策者提供科学、严谨的决策依据,以降低企业运营风险,提高企业核心竞争力。
㈦ 数据分析有哪些流程
1.分析设计
首先是明确数据分析目的,只有明确目的,数据分析才不会偏离方向,否则得出的数据分析结果不仅没有指导意义,亦即目的引导。当分析目的明确后,我们需要对思路进行梳理分析,并搭建分析框架,需要把分析目的分解成若干个不同的分析要点,也就是说要达到这个目的该如何具体开展数据分析?需要从哪几个角度进行分析?采用哪些分析指标?采用哪些逻辑思维?运用哪些理论依据?
2.数据收集
数据收集是按照确定的数据分析框架,收集相关数据的过程,它为数据分析提供了素材和依据。这里的数据包括一手数据与二手数据,一手数据主要指可直接获取的数据,如公司内部的数据库、市场调查取得的数据等;二手数据主要指经过加工整理后得到的数据,如统计局在互联网上发布的数据、公开出版物中的数据等。
3.数据处理
数据处理是指对采集到的数据进行加工整理,形成适合数据分析的样式,保证数据的一致性和有效性。它是数据分析前必不可少的阶段。数据处理的基本目的是从大量的、可能杂乱无章、难以理解的数据中抽取并推导出对解决问题有价值、有意义的数据。如果数据本身存在错误,那么即使采用最先进的数据分析方法,得到的结果也是错误的,不具备任何参考价值,甚至还会误导决策。
4.数据分析
数据分析是指用适当的分析方法及工具,对收集来的数据进行分析,提取有价值的信息,形成有效结论的过程。在确定数据分析思路阶段,数据分析师就应当为需要分析的内容确定适合的数据分析方法。到了这个阶段,就能够驾驭数据,从容地进行分析和研究了。
5.数据展现
通过数据分析,隐藏在数据内部的关系和规律就会逐渐浮现出来,那么通过什么方式展现出这些关系和规律,才能让别人一目了然。一般情况下,数据是通过表格和图形的方式来呈现的,即用图表说话。
6. 报告撰写
数据分析报告其实是对整个数据分析过程的一个总结与呈现。通过报告,把数据分析的起因、过程、结果及建议完整地呈现出来,以供决策者参考。所以数据分析报告是通过对数据全方位的科学分析来评估企业运营质量,为决策者提供科学、严谨的决策依据,以降低企业运营风险,提高企业核心竞争力。
㈧ 数据分析的具体流程是什么
一、数据收集
数据收集是数据分析的最基本操作,你要分析一个东西,首先就得把这个东西收集起来才行。由于现在数据采集的需求,一般有Flume、Logstash、Kibana等工具,它们都能通过简单的配置完成复杂的数据收集和数据聚合。
二、数据预处理
收集好以后,我们需要对数据去做一些预处理。千万不能一上来就用它做一些算法和模型,这样的出来的结果是不具备参考性的。数据预处理的原因就是因为很多数据有问题,比如说他遇到一个异常值(大家都是正的,突然蹦出个负值),或者说缺失值,我们都需要对这些数据进行预处理。
三、数据存储
数据预处理之后,下一个问题就是:数据该如何进行存储?通常大家最为熟知是MySQL、Oracle等传统的关系型数据库,它们的优点是能够快速存储结构化的数据,并支持随机访问。但大数据的数据结构通常是半结构化(如日志数据)、甚至是非结构化的(如视频、音频数据),为了解决海量半结构化和非结构化数据的存储,衍生了HadoopHDFS、KFS、GFS等分布式文件系统,它们都能够支持结构化、半结构和非结构化数据的存储,并可以通过增加机器进行横向扩展。
四、数据分析
做数据分析有一个非常基础但又极其重要的思路,那就是对比,基本上 90% 以上的分析都离不开对比。主要有:纵比、横比、与经验值对比、与业务目标对比等。
五、数据运用
其实也就是把数据结果通过不同的表和图形,可视化展现出来。使人的感官更加的强烈。常见的数据可视化工具可以是excel,也可以用power BI系统。
六、总结分析
根据数据分析的结果和报告,提出切实可行的方案,帮助企业决策等。
关于数据分析的具体流程是什么,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
㈨ 市场数据分析怎么做
1.明确目的和思路
首先明白本次的目的,梳理分析思路,并搭建整体分析框架,把分析目的分解,化为若干的点,清晰明了,即分析的目的,用户什么样的,如何具体开展数据分析,需要从哪几个角度进行分析,采用哪些分析指标(各类分析指标需合理搭配使用)。同时,确保分析框架的体系化和逻辑性。
2.数据收集
根据目的和需求,对数据分析的整体流程梳理,找到自己的数据源,进行数据分析,一般数据来源于四种方式:数据库、第三方数据统计工具、专业的调研机构的统计年鉴或报告(如艾瑞资讯)、市场调查。
3.数据处理
数据收集就会有各种各样的数据,有些是有效的有些是无用的,这时候我们就要根据目的,对数据进行处理,处理主要包括数据清洗、数据转化、数据提取、数据计算等处理方法,将各种原始数据加工成为产品经理需要的直观的可看数据。
4.数据分析
数据处理好之后,就要进行数据分析,数据分析是用适当的分析方法及工具,对处理过的数据进行分析,提取有价值的信息,形成有效结论的过程。
5.数据展现
一般情况下,数据是通过表格和图形的方式来呈现的。常用的数据图表包括饼图、柱形图、条形图、折线图、气泡图、散点图、雷达图等。进一步加工整理变成我们需要的图形,如金字塔图、矩阵图、漏斗图、帕雷托图等。
6.报告撰写
撰写报告一定要图文结合,清晰明了,框架一定要清楚,能够让阅读者读懂才行。结构清晰、主次分明可以使阅读者正确理解报告内容;图文并茂,可以令数据更加生动活泼,提高视觉冲击力,有助于阅读者更形象、直观地看清楚问题和结论,从而产生思考。
㈩ 数据分析有哪些关键步骤
1.决定目标
数据价值链的第一步必须先有数据,然后业务部门已经决定数据科学团队的目标。这些目标通常需要进行大量的数据收集和分析。因为我们正在研究数据驱动决策,我们需要一个可衡量的方式知道业务正向着目标前进。
2.确定业务标杆
业务应该做出改变来改善关键指标从而达到它们的目标。如果没有什么可以改变,就不可能有进步,,论多少数据被收集和分析。确定目标、指标在项目早期为项目提供了方向,避免无意义的数据分析。
3.数据收集
撒一张数据的大网,更多数据,特别是数据从不同渠道找到更好的相关性,建立更好的模型,找到更多可行的见解。大数据经济意味着个人记录往往是无用的,在每个记录可供分析才可以提供真正的价值。
4.数据清洗
数据分析的第一步是提高数据质量。数据科学家处理正确的拼写错误,处理缺失数据和清除无意义的信息。在数据价值链中这是最关键的步骤,即使最好的数据值分析如果有垃圾数据这将会产生错误结果和误导。
5.数据建模
数据科学家构建模型,关联数据与业务成果和提出建议并确定关于业务价值的变化这是其中的第一步。这就是数据科学家成为关键业务的独特专长,通过数据,建立模型,预测业务成果。
6.数据科学团队
数据科学家是出了名的难以雇用,这是一个好主意来构建一个数据科学团队通过那些有一个高级学位统计关注数据建模和预测,而团队的其他人,合格的基础设施工程师,软件开发人员和ETL 专家,建立必要的数据收集基础设施、数据管道和数据产品,使数据通过报告和仪表盘来显示结果和业务模型。
7.优化和重复
数据价值链是一个可重复的过程,通过连续改进价值链的业务和数据本身。基于模型的结果,企业将通过数据科学团队测量的结果来驱动业务。