Ⅰ 秒杀过程中怎么保证redis缓存和数据库的一致性
如果要“保证”数据的安全性,那么会带来开销的进一步提升,以至于使用redis带来的性能优势都会丧失。正确的做法是区分不同的业务,使得并不需要“保证”数据一致性的场合,可以使用redis优化。而敏感的场合依然使用mysql。
Ⅱ Cache缓存,怎么实现与数据库同步
如果数据库是SQL Server,可以使用SqlDependency进行缓存:
http://www.cnblogs.com/tuyile006/archive/2010/02/01/1660910.html
Ⅲ 如何保证缓存与数据库双写时的数据一致性
一般来说,就是如果系统不是严格要求缓存+数据库必须一致性的话,缓存可以稍微的跟数据库偶尔有不一致的情况,最好不要做这个方案,读请求和写请求串行化,串到一个内存队列里去,这样就可以保证一定不会出现不一致的情况
串行化之后,就会导致系统的吞吐量会大幅度的降低,用比正常情况下多几倍的机器去支撑线上的一个请求。
Ⅳ java多线程下如何保证数据的一致性
以mysql来说,可能出现脏读、不可重复读以及幻读,mysql默认设置是可重复读,即一次事务中不会读取到不同的数据。
可以做如下操作:
1)打开两个客户端,均设置为RR;
2)在一个事务中,查询某个操作查到某份数据;比如是某个字段version=1存在数据;
3)在另一个事务中,删除这份version=1的数据;删除后,在2所属的事务中查询数据是没有变化的,还是存在version=1的数据;
4)当我们在2所属的事务中继续更新数据,那么会发现更新不了,明明我们就看到了这份version=1的数据;
缓存一致性:
缓存一致,与什么一致?是与数据库一致,对外查询每个时刻一致;所以在针对于缓存与数据库之间该先更新哪一个呢?可能有人觉得我先更新数据库,再更新缓存不就行了吗?但是有想过个问题吗?
当用户已经支付成功了,更新到数据库,但是呢?你还在缓存中显示未支付,在用户点击频率很高并且数据库压力过大,来不及同步到缓存时,那你是不是很尴尬,这就是典型的不一致了。此时用户再支付,那你又告诉他已经支付了,那他会把你骂死的
那该怎么来做呢?我们可以这样,先更新缓存再更新数据库,那么存在什么问题呢?
1)缓存更新成功,但是数据库更新失败,而被其它的并发线程访问到
2)缓存淘汰成功,但是数据库更新失败,这也会引发后期数据不一致
Ⅳ Cache缓存,怎么实现与数据库同步
使用SQLDependency缓存依赖,以下是一个推SQL缓存依赖的例子,当数据库更新后缓存会自动更新
void Page_Load()
{
DataTable movies=(DataTable)Cache["Movie"];
if(movie=null)
{
SqlDataAdapter adpter=new SqlDataAdatper("Select * From Movie",sqlConnection);
SqlCacheDependency sqlDepend=new SqlCacheDependency(adapter.SelectCommand);
movies=new DataTable();
//注意必须在adpter.Fill()前先建立SqlCacheDependency,否则无效
adpter.Fill(movies);
Cache.Insert("Movie",movies,sqlDepend);
}
}
Ⅵ 如何校验数据库和缓存之间数据的一致性
您好,这样的:
这种writer-reader架构,一般思路是在缓存更新阶段由writer来解决一致性问题,当数据库数据变化时,同步更新redis并确保缓存更新成功。
作为完整性判断,可以不检查全部的属性,而对数据使用一个自增的版本号(或时间戳)来判断是否最新。
作为后置的检测,可以优化来降低扫描的代价,如只针对最近一个时间周期内(如10min)数据库中更新过的数据,这个集合应该比较小,去redis中进行检查的代价会比较低。
Ⅶ Redis 如何保持和 MySQL 数据一致
redis在启动之后,从数据库加载数据。
读请求:
不要求强一致性的读请求,走redis,要求强一致性的直接从mysql读取
写请求:
数据首先都写到数据库,之后更新redis(先写redis再写mysql,如果写入失败事务回滚会造成redis中存在脏数据)
在并发不高的情况下,读操作优先读取redis,不存在的话就去访问MySQL,并把读到的数据写回Redis中;写操作的话,直接写MySQL,成功后再写入Redis(可以在MySQL端定义CRUD触发器,在触发CRUD操作后写数据到Redis,也可以在Redis端解析binlog,再做相应的操作)
在并发高的情况下,读操作和上面一样,写操作是异步写,写入Redis后直接返回,然后定期写入MySQL
1.当更新数据时,如更新某商品的库存,当前商品的库存是100,现在要更新为99,先更新数据库更改成99,然后删除缓存,发现删除缓存失败了,这意味着数据库存的是99,而缓存是100,这导致数据库和缓存不一致。
解决方法:
这种情况应该是先删除缓存,然后在更新数据库,如果删除缓存失败,那就不要更新数据库,如果说删除缓存成功,而更新数据库失败,那查询的时候只是从数据库里查了旧的数据而已,这样就能保持数据库与缓存的一致性。
2.在高并发的情况下,如果当删除完缓存的时候,这时去更新数据库,但还没有更新完,另外一个请求来查询数据,发现缓存里没有,就去数据库里查,还是以上面商品库存为例,如果数据库中产品的库存是100,那么查询到的库存是100,然后插入缓存,插入完缓存后,原来那个更新数据库的线程把数据库更新为了99,导致数据库与缓存不一致的情况
解决方法:
遇到这种情况,可以用队列的去解决这个问,创建几个队列,如20个,根据商品的ID去做hash值,然后对队列个数取摸,当有数据更新请求时,先把它丢到队列里去,当更新完后在从队列里去除,如果在更新的过程中,遇到以上场景,先去缓存里看下有没有数据,如果没有,可以先去队列里看是否有相同商品ID在做更新,如果有也把查询的请求发送到队列里去,然后同步等待缓存更新完成。
这里有一个优化点,如果发现队列里有一个查询请求了,那么就不要放新的查询操作进去了,用一个while(true)循环去查询缓存,循环个200MS左右,如果缓存里还没有则直接取数据库的旧数据,一般情况下是可以取到的。
1、读请求时长阻塞
由于读请求进行了非常轻度的异步化,所以一定要注意读超时的问题,每个读请求必须在超时间内返回,该解决方案最大的风险在于可能数据更新很频繁,导致队列中挤压了大量的更新操作在里面,然后读请求会发生大量的超时,最后导致大量的请求直接走数据库,像遇到这种情况,一般要做好足够的压力测试,如果压力过大,需要根据实际情况添加机器。
2、请求并发量过高
这里还是要做好压力测试,多模拟真实场景,并发量在最高的时候QPS多少,扛不住就要多加机器,还有就是做好读写比例是多少
3、多服务实例部署的请求路由
可能这个服务部署了多个实例,那么必须保证说,执行数据更新操作,以及执行缓存更新操作的请求,都通过nginx服务器路由到相同的服务实例上
4、热点商品的路由问题,导致请求的倾斜
某些商品的读请求特别高,全部打到了相同的机器的相同丢列里了,可能造成某台服务器压力过大,因为只有在商品数据更新的时候才会清空缓存,然后才会导致读写并发,所以更新频率不是太高的话,这个问题的影响并不是很大,但是确实有可能某些服务器的负载会高一些。
img
搜索微信号(ID:芋道源码),可以获得各种 Java 源码解析。
并且,回复【书籍】后,可以领取笔者推荐的各种 Java 从入门到架构的书籍。
Ⅷ redis如何与数据库数据同步
数据库同步到Redis
我们大多倾向于使用这种方式,也就是将数据库中的变化同步到Redis,这种更加可靠。Redis在这里只是做缓存。
方案1 (推荐学习:Redis视频教程)
做缓存,就要遵循缓存的语义规定:
读:读缓存redis,没有,读mysql,并将mysql的值写入到redis。
写:写mysql,成功后,更新或者失效掉缓存redis中的值。
对于一致性要求高的,从数据库中读,比如金融,交易等数据。其他的从Redis读。
这种方案的好处是由mysql,常规的关系型数据库来保证持久化,一致性等,不容易出错。
方案2
这里还可以基于binlog使用mysql_udf_redis,将数据库中的数据同步到Redis。
但是很明显的,这将整体的复杂性提高了,而且本来我们在系统代码中能很轻易完成的功能,现在需要依赖第三方工具,而且系统的整个边界扩大了,变得更加不稳定也不好管理了。
Ⅸ hibernate缓存怎么与数据库保持同步
重新执行query