❶ 组成计算机cpu的两大部件是什么
中央处理器是计算机的运算核心和控制核心。也就是你所说的两大部件。CPU是信息处理、程序运行的最终执行单元。 并包含运算逻辑部件、寄存器部件和控制部件等,并具有处理指令、执行操作、控制时间、处理数据等功能。
❷ 在cpu 中,用来暂时存放数据、指令等各种信息的部件是什么
L1,L2缓存
❸ CPU执行方式
CPU的工作分为 5 个阶段:取指令阶段、指令译码阶段、执行指令阶段、访存取数和结果写回。
1、取指令(IF,instruction fetch),即将一条指令从主存储器中取到指令寄存器的过程。
2、指令译码阶段(ID,instruction decode),取出指令后,指令译码器按照预定的指令格式,对取回的指令进行拆分和解释,识别区分出不同的指令类 别以及各种获取操作数的方法。
3、执行指令阶段(EX,execute),具体实现指令的功能。CPU的不同部分被连接起来,以执行所需的操作。
4、访存取数阶段(MEM,memory),根据指令需要访问主存、读取操作数,CPU得到操作数在主存中的地址,并从主存中读取该操作数用于运算。
5、结果写回阶段(WB,write back),作为最后一个阶段,结果写回阶段把执行指令阶段的运行结果数据“写回”到某种存储形式。
(3)cpu用哪个部件处理数据扩展阅读:
CPU的根本任务就是执行指令,对计算机来说最终都是一串由“0”和“1”组成的序列。CPU从逻辑上可以划分成3个模块,分别是控制单元、运算单元和存储单元,这三部分由CPU内部总线连接起来。
1、控制单元是整个CPU的指挥控制中心,由指令寄存器IR(Instruction Register)、指令译码器ID(Instruction Decoder)和 操作控制器 OC(Operation Controller)等,对协调整个电脑有序工作极为重要。
2、运算单元,是运算器的核心。可以执行算术运算(包括加减乘数等基本运算及其附加运算)和逻辑运算(包括移位、逻辑测试或两个值比较)。
3、存储单元,包括CPU片内缓存和寄存器组,是CPU中暂时存放数据的地方,里面保存着那些等待处理的数据,或已经处理过的数据,CPU访问寄存器所用的时间要比访问内存的时间短。
一 CPU的原始工作模式
在了解CPU工作原理之前,我们先简单谈谈CPU是如何生产出来的。CPU是在特别纯净的硅材料上制造的。一个CPU芯片包含上百万个精巧的晶体管。人们在一块指甲盖大小的硅片上,用化学的方法蚀刻或光刻出晶体管。因此,从这个意义上说,CPU正是由晶体管组合而成的。简单而言,晶体管就是微型电子开关,它们是构建CPU的基石,你可以把一个晶体管当作一个电灯开关,它们有个操作位,分别代表两种状态:ON(开)和OFF(关)。这一开一关就相当于晶体管的连通与断开,而这两种状态正好与二进制中的基础状态“0”和“1”对应!这样,计算机就具备了处理信息的能力。
但你不要以为,只有简单的“0”和“1”两种状态的晶体管的原理很简单,其实它们的发展是经过科学家们多年的辛苦研究得来的。在晶体管之前,计算机依靠速度缓慢、低效率的真空电子管和机械开关来处理信息。后来,科研人员把两个晶体管放置到一个硅晶体中,这样便创作出第一个集成电路,再后来才有了微处理器。
看到这里,你一定想知道,晶体管是如何利用“0”和“1”这两种电子信号来执行指令和处理数据的呢?其实,所有电子设备都有自己的电路和开关,电子在电路中流动或断开,完全由开关来控制,如果你将开关设置为OFF,电子将停止流动,如果你再将其设置为ON,电子又会继续流动。晶体管的这种ON与OFF的切换只由电子信号控制,我们可以将晶体管称之为二进制设备。这样,晶体管的ON状态用“1”来表示,而OFF状态则用“0”来表示,就可以组成最简单的二进制数。众多晶体管产生的多个“1”与“0”的特殊次序和模式能代表不同的情况,将其定义为字母、数字、颜色和图形。举个例子,十进位中的1在二进位模式时也是“1”,2在二进位模式时是“10”,3是“11”,4是“100”,5是“101”,6是“110”等等,依此类推,这就组成了计算机工作采用的二进制语言和数据。成组的晶体管联合起来可以存储数值,也可以进行逻辑运算和数字运算。加上石英时钟的控制,晶体管组就像一部复杂的机器那样同步地执行它们的功能。
CPU的内部结构
现在我们已经大概知道CPU是负责些什么事情,但是具体由哪些部件负责处理数据和 执行程序 呢?
1.算术逻辑单元ALU(Arithmetic Logic Unit)
ALU是运算器的核心。它是以全加器为基础,辅之以 移位寄存器 及相应控制逻辑组合而成的电路,在控制信号的作用下可完成加、减、乘、除四则运算和各种逻辑运算。就像刚才提到的,这里就相当于工厂中的生产线,负责运算数据。
2.寄存器组 RS(Register Set或Registers)
RS实质上是CPU中暂时存放数据的地方,里面保存着那些等待处理的数据,或已经处理过的数据,CPU访问寄存器所用的时间要比访问内存的时间短。采用寄存器,可以减少CPU访问内存的次数,从而提高了CPU的工作速度。但因为受到芯片面积和集成度所限,寄存器组的容量不可能很大。寄存器组可分为专用寄存器和通用寄存器。专用寄存器的作用是固定的,分别寄存相应的数据。而通用寄存器用途广泛并可由程序员规定其用途。通用寄存器的数目因微处理器而异
您在浏览本页面时使用的计算机便通过微处理器来完成其工作。微处理器是所有标准计算机的心脏,无论该计算机是桌面计算机、服务器还是笔记本电脑。您正在使用的微处理器可能是奔腾、K6、PowerPC、Sparc或者其他任何品牌和类型的微处理器,但是它们的作用大体相同,工作方式也基本类似。
3.控制单元(Control Unit)
正如工厂的物流分配部门,控制单元是整个CPU的指挥控制中心,由指令寄存器IR(Instruction Register)、指令译码器ID(Instruction Decoder)和 操作控制器 0C(Operation Controller)三个部件组成,对协调整个电脑有序工作极为重要。它根据用户预先编好的程序,依次从存储器中取出各条指令,放在指令寄存器IR中,通过指令译码(分析)确定应该进行什么操作,然后通过 操作控制器 OC,按确定的时序,向相应的部件发出微操作控制信号。操作控制器OC中主要包括节拍 脉冲发生器 、控制矩阵、 时钟脉冲 发生器、 复位电路 和启停电路等控制逻辑。
4.总线(Bus)
就像工厂中各部位之间的联系渠道,总线实际上是一组导线,是各种公共信号线的集合,用于作为电脑中所有各组成部分传输信息共同使用的“公路”。直接和CPU相连的总线可称为局部总线。其中包括: 数据总线DB(Data Bus)、地址总线AB(Address Bus) 、控制总线CB(Control Bus)。其中,数据总线用来传输数据信息;地址总线用于传送CPU发出的地址信息;控制总线用来传送控制信号、时序信号和状态信息等。
CPU的工作流程
由晶体管组成的CPU是作为处理数据和 执行程序 的核心,其英文全称是:Central Processing Unit,即中央处理器。首先,CPU的内部结构可以分为控制单元,逻辑运算单元和存储单元(包括内部总线及缓冲器)三大部分。CPU的工作原理就像一个工厂对产品的加工过程:进入工厂的原料(程序指令),经过物资分配部门(控制单元)的调度分配,被送往生产线(逻辑运算单元),生产出成品(处理后的数据)后,再存储在仓库(存储单元)中,最后等着拿到市场上去卖(交由应用程序使用)。在这个过程中,我们注意到从控制单元开始,CPU就开始了正式的工作,中间的过程是通过逻辑运算单元来进行运算处理,交到存储单元代表工作的结束。
数据与指令在CPU中的运行
刚才已经为大家介绍了CPU的部件及基本原理情况,现在,我们来看看数据是怎样在CPU中运行的。我们知道,数据从输入设备流经内存,等待CPU的处理,这些将要处理的信息是按字节存储的,也就是以8位二进制数或8比特为1个单元存储,这些信息可以是数据或指令。数据可以是二进制表示的字符、数字或颜色等等。而指令告诉CPU对数据执行哪些操作,比如完成加法、减法或移位运算。
我们假设在内存中的数据是最简单的原始数据。首先,指令指针(Instruction Pointer)会通知CPU,将要执行的指令放置在内存中的存储位置。因为内存中的每个存储单元都有编号(称为地址),可以根据这些地址把数据取出,通过地址总线送到控制单元中,指令译码器从指令寄存器IR中拿来指令,翻译成CPU可以执行的形式,然后决定完成该指令需要哪些必要的操作,它将告诉算术逻辑单元(ALU)什么时候计算,告诉指令读取器什么时候获取数值,告诉指令译码器什么时候翻译指令等等。
假如数据被送往算术逻辑单元,数据将会执行指令中规定的算术运算和其他各种运算。当数据处理完毕后,将回到寄存器中,通过不同的指令将数据继续运行或者通过DB总线送到数据缓存器中。
基本上,CPU就是这样去执行读出数据、处理数据和往内存写数据3项基本工作。但在通常情况下,一条指令可以包含按明确顺序执行的许多操作,CPU的工作就是执行这些指令,完成一条指令后,CPU的控制单元又将告诉指令读取器从内存中读取下一条指令来执行。这个过程不断快速地重复,快速地执行一条又一条指令,产生你在显示器上所看到的结果。我们很容易想到,在处理这么多指令和数据的同时,由于数据转移时差和CPU处理时差,肯定会出现混乱处理的情况。为了保证每个操作准时发生,CPU需要一个时钟,时钟控制着CPU所执行的每一个动作。时钟就像一个节拍器,它不停地发出脉冲,决定CPU的步调和处理时间,这就是我们所熟悉的CPU的标称速度,也称为主频。主频数值越高,表明CPU的工作速度越快。
如何提高CPU工作效率
既然CPU的主要工作是执行指令和处理数据,那么工作效率将成为CPU的最主要内容,因此,各CPU厂商也尽力使CPU处理数据的速度更快。
根据CPU的内部运算结构,一些制造厂商在CPU内增加了另一个算术逻辑单元(ALU),或者是另外再设置一个处理非常 大和 非常小的数据浮点运算单元(Floating Point Unit,FPU),这样就大大加快了数据运算的速度。
而在执行效率方面,一些厂商通过流水线方式或以几乎并行工作的方式执行指令的方法来提高指令的执行速度。刚才我们提到,指令的执行需要许多独立的操作,诸如取指令和译码等。最初CPU在执行下一条指令之前必须全部执行完上一条指令,而现在则由分布式的电路各自执行操作。也就是说,当这部分的电路完成了一件工作后,第二件工作立即占据了该电路,这样就大大增加了执行方面的效率。
另外,为了让指令与指令之间的连接更加准确,现在的CPU通常会采用多种预测方式来控制指令更高效率地执行。
❹ cpu主要用来储存程序和数据
如果学过计算机的都知道,CPU主要的功能是计算并处理数据,一般计算机的工作原理是这样的,计算机所有的文件和指令文件全部存放在电脑硬盘中,当计算机需要处理文件或运行软件的时候,CPU会发出指令通过系统总线传输给硬盘,硬盘通过磁头扫描磁道将对应的文件和指令读取出来,传输给内存,放入内存中,然后内存将指令传输给CPU外围一个叫做高速缓存的地方,然后在进入CPU,由CPU计算后给出输出指令集,这样计算机的处理结果就出来了。
计算机存储文件并不在CPU内,断电或关机后,CPU正在处理的东西将会丢失。计算机存储的文件全部放在内存中。另外,CPU是一个硬件,只要主板可以兼容某个CPU,那么CPU是可以移植到其他电脑上继续使用的。
内存也被称为内存储器,其功能是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。内存条是由内存芯片、电路板、内存颗粒、金手指等部分组成的。
硬盘是用来储存平时安装的软件、电影、游戏、音乐等的一个数据容器.在一台电脑中,硬盘的作用仅次于CPU和内存。主要功能是存储操作系统、程序以及数据。
CPU用来解释计算机指令以及处理计算机中的数据
CPI 用于衡量计算机的运算速度.
显卡作为电脑主机里的一个重要组成部分,是电脑进行数模信号转换的设备,承担输出显示图形的任务。在科学计算中,显卡被称为显示加速卡。主要功能用于数模信号转换、图像处理、提高CPU运行速度。
❺ CPU所执行的指令和处理的数据
错误的原因:CPU所执行的指令和处理的数据都是直接从磁盘或光盘中取出,处理结果也直接存入磁盘。
CPU和IO设备的速度不匹配。CPU不会直接从磁盘或CD-ROM执行指令,为了提高CPU效率,也不可能将数据直接保存到磁盘。
当计算机工作时,由中央处理器执行的程序和被处理的数据直接从主存储器而不是磁盘或CD-ROM中获得。
读取数据的顺序是:CPU——CPU缓存——内存——磁盘缓存——磁盘(CD-ROM)。
(5)cpu用哪个部件处理数据扩展阅读:
CPU的结构大致可分为操作逻辑单元、寄存器单元和控制单元。所谓运算逻辑单元,主要是能进行相关的逻辑运算,如:能执行移位运算和逻辑运算,除了还能执行定点或浮点运算和地址运算和转换命令外,是一种多功能的运算单元。
寄存器是用来临时存储指令、数据和地址的。控制单元主要用于对指令进行分析并发出相应的控制信号。而计算机的存储器又可分为随机存取存储器(RAM)和只读存储器(ROM)。
❻ 组成中央处理器(cpu)的主要部件是
中央处理器也就是CPU,它是一块超大规模的集成电路,是一台计算机的运算核心和控制核心。它的功能主要是解释计算机指令以及处理计算机软件中的数据。
CPU 包括运算逻辑部件、寄存器部件和控制部件等。(算术逻辑运算单元,ALU,Arithmetic Logic Unit)和高速缓冲存储器(Cache)及实现它们之间联系的数据(Data)、控制及状态的总线(Bus)。它与内部存储器(Memory)和输入/输出(I/O)设备合称为电子计算机三大核心部件。
逻辑部件
英文Logic components;运算逻辑部件。可以执行定点或浮点算术运算操作、移位操作以及逻辑操作,也可执行地址运算和转换。
寄存器
寄存器部件,包括寄存器、专用寄存器和控制寄存器。 通用寄存器又可分定点数和浮点数两类,它们用来保存指令执行过程中临时存放的寄存器操作数和中间(或最终)的操作结果。 通用寄存器是中央处理器的重要部件之一。
控制部件
英文Control unit;控制部件,主要是负责对指令译码,并且发出为完成每条指令所要执行的各个操作的控制信号。
其结构有两种:一种是以微存储为核心的微程序控制方式;一种是以逻辑硬布线结构为主的控制方式。
微存储中保持微码,每一个微码对应于一个最基本的微操作,又称微指令;各条指令是由不同序列的微码组成,这种微码序列构成微程序。中央处理器在对指令译码以后,即发出一定时序的控制信号,按给定序列的顺序以微周期为节拍执行由这些微码确定的若干个微操作,即可完成某条指令的执行。
简单指令是由(3~5)个微操作组成,复杂指令则要由几十个微操作甚至几百个微操作组成。
(6)cpu用哪个部件处理数据扩展阅读
CPU 从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指令译码。它把指令分解成一系列的微操作,然后发出各种控制命令,执行微操作系列,从而完成一条指令的执行。指令是计算机规定执行操作的类型和操作数的基本命令。指令是由一个字节或者多个字节组成,其中包括操作码字段、一个或多个有关操作数地址的字段以及一些表征机器状态的状态字以及特征码。有的指令中也直接包含操作数本身。
❼ 构成CPU的主要部件是什么
构成CPU的主要部件是运算器、控制器、寄存器组。
运算器的处理对象是数据,所以数据长度和计算机数据表示方法,对运算器的性能影响极大。70年代微处理器常以1个、4个、8个、16个二进制位作为处理数据的基本单位。大多数通用计算机则以16、32、64位作为运算器处理数据的长度。
能对一个数据的所有位同时进行处理的运算器称为并行运算器。如果一次只处理一位,则称为串行运算器。有的运算器一次可处理几位 (通常为6或8位),一个完整的数据分成若干段进行计算,称为串/并行运算器。运算器往往只处理一种长度的数据。
有的也能处理几种不同长度的数据,如半字长运算、双倍字长运算、四倍字长运算等。有的数据长度可以在运算过程中指定。
(7)cpu用哪个部件处理数据扩展阅读
中央处理器强大的数据处理功有效提升了计算机的工作效率,在数据加工操作时,并不仅仅只是一项简单的操作,中央处理器的操作是建立在计算机使用人员下达的指令任务基础上,在执行指令任务过程中,实现用户输入的控制指令与CPU的相对应。
随着我国信息技术的快速发展,计算机在人们生活、工作 以及企业办公自动化中得到广泛应用,其作为一种主控设备,为促进电子商务网络的发展起着促进作用,使 CPU 控制性能的升级进程得到很大提高。
指令控制、实际控制、操作控制等就是计算机 CPU 技术应用作用表现。
集中处理模式的操作,建立在具体程序指令的基础上实施,以此满足计算机使用者的需求,CPU 在操作过程中可以根据实际情况进行选择,满足用户的数据流程需求。 指令控制技术发挥的重要作用。根据用户的需求来拟定运算方式,使数据指令动作的有序制定得到良好维持。
CPU在执行当中,程序各指令的实施是按照顺利完成,只有使其遵循一定顺序,才能保证计算机使用效果。CPU 主要是展开数据集自动化处理,其 是实现集中控制的关键,其核心就是指令控制操作。
❽ 运算器和控制器即CPU是计算机的什么部件
我认为是路由器得大脑,cpu在电脑的部件里面起到了分析数据,处理数据的作用,统筹整个电脑的运行,对于数据的处理不是大脑是什么
❾ 构成CPU的主要部件是
CPU主要由运算器、控制器、寄存器组和内部总线等构成。
相关介绍:
CPU主要包括两个部分即控制器、运算器,其中还包括高速缓冲存储器及实现它们之间联系的数据、控制的总线。
运算器的基本操作包括加、减、乘、除四则运算,与、或、非、异或等逻辑操作,以及移位、比较和传送等操作,亦称算术逻辑部件(ALU)。
控制器由程序计数器、指令寄存器、指令译码器、时序产生器和操作控制器组成,它是发布命令的“决策机构”,即完成协调和指挥整个计算机系统的操作。
(9)cpu用哪个部件处理数据扩展阅读
CPU出现于大规模集成电路时代,处理器架构设计的迭代更新以及集成电路工艺的不断提升促使其不断发展完善。
从最初专用于数学计算到广泛应用于通用计算,从4位到8位、16位、32位处理器,最后到64位处理器。现代处理器进一步引入了诸如并行化、多核化、虚拟化以及远程管理系统等功能,不断推动着上层信息系统向前发展。
❿ 组成中央处理器(CPU)的主要部件是什么
CPU内部结构大概可以分为控制单元、运算单元、存储单元和时钟等几个主要部分。
运算器是计算机对数据进行加工处理的中心,它主要由算术逻辑部件(ALU:Arithmetic and Logic Unit)、寄存器组和状态寄存器组成。ALU主要完成对二进制信息的定点算术运算、逻辑运算和各种移位操作。通用寄存器组是用来保存参加运算的操作数和运算的中间结果。状态寄存器在不同的机器中有不同的规定,程序中,状态位通常作为转移指令的判断条件。
控制器是计算机的控制中心,它决定了计算机运行过程的自动化。它不仅要保证程序的正确执行,而且要能够处理异常事件。控制器一般包括指令控制逻辑、时序控制逻辑、总线控制逻辑、中断控制逻辑等几个部分。
指令控制逻辑要完成取指令、分析指令和执行指令的操作。时序控制逻辑要为每条指令按时间顺序提供应有的控制信号。一般时钟脉冲就是最基本的时序信号,是整个机器的时间基准,称为机器的主频。执行一条指令所需要的时间叫做一个指令周期,不同指令的周期有可能不同。一般为便于控制,根据指令的操作性质和控制性质不同,会把指令周期划分为几个不同的阶段,每个阶段就是一个CPU周期。早期CPU同内存在速度上的差异不大,所以CPU周期通常和存储器存取周期相同,后来,随着CPU的发展现在速度上已经比存储器快很多了,于是常常将CPU周期定义为存储器存取周期的几分之一。
总线逻辑是为多个功能部件服务的信息通路的控制电路。就CPU而言一般分为内部总线和CPU对外联系的外部总线,外部总线有时候又叫做系统总线、前端总线(FSB)等。
中断是指计算机由于异常事件,或者一些随机发生需要马上处理的事件,引起CPU暂时停止现在程序的执行,转向另一服务程序去处理这一事件,处理完毕再返回原程序的过程。由机器内部产生的中断,我们把它叫做陷阱(内部中断),由外部设备引起的中断叫外部中断。
(10)cpu用哪个部件处理数据扩展阅读
购买CPU的注意事项主要包括如下几个方面:
1.首先根据你的实际用途确定CPU的种类和系列。比如你需要处理器性能较强特别是单核心性能强,那就关注intel的I5和I7系列,如果追求性价比和多核整体性能,可以考虑AMD的推土机FX系列和羿龙II系列,如果仅仅是家庭一般使用和影音娱乐,建议考虑AMD的APU系列,如果只要求最基本的性能,intel的I3和奔腾以及AMD的速龙II系列;
2.然后根据你的预算选择里面最合适的。如果你是配置全新的主机,首先选择好处理器是最好的。如果你是更换升级处理器,那就要对原先主机的主板和电源功率比较清楚。因为主板决定了那些接口和系列的处理器可以支持更替,电源功率特别是5V和3.3V联合输出功率决定了最大的CPU的TDP,即处理器的供电功率值;
3.具体CPU的物理和性能参数不必深究,因为CPU的系列分类基本就决定了其性能规格的强弱,而且与价位基本成正相关。一个系列下的价位区别往往是主频的区别;
4.对于电脑发烧友特别是想要进行处理器超频的用户来说,CPU的购买还要关注其型号下末尾有没有带K的细分款型,K代表不锁频,主板支持下可以在BIOS里设置超频参数;
5.最后的购买注意事项是购买渠道的问题。建议在京东这样的大型专业电脑配件类商城购买,正品保障和价位都是合理的。如果非要去实体柜台买,建议先自己看好此款的参数避免被掉包,而且带上检测软件当场检验是否属实,这样可以避开处理器表面修改型号编码的猫腻发生。