❶ 预测模型可分为哪几类
1、趋势外推预测方法
趋势外推预测方法是根据事物的历史和现实数据,寻求事物随时间推移而发展变化的规律,从而推测其未来状况的一种常用的预测方法。
趋势外推法的假设条件是:
(1)假设事物发展过程没有跳跃式变化,即事物的发展变化是渐进型的。
(2)假设所研究系统的结构、功能等基本保持不变,即假定根据过去资料建立的趋势外推模型能适合未来,能代表未来趋势变化的情况。
由以上两个假设条件可知,趋势外推预测法是事物发展渐进过程的一种统计预测方法。简言之,就是运用一个数学模型,拟合一条趋势线,然后用这个模型外推预测未来时期事物的发展。
2、回归预测方法
回归预测方法是根据自变量和因变量之间的相关关系进行预测的。自变量的个数可以一个或多个,根据自变量的个数可分为一元回归预测和多元回归预测。同时根据自变量和因变量的相关关系,分为线性回归预测方法和非线性回归方法。回归问题的学习等价于函数拟合:选择一条函数曲线使其很好的拟合已知数据且能很好的预测未知数据。
3、卡尔曼滤波预测模型
卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的模型,其基本思想是: 采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。
它适合于实时处理和计算机运算。卡尔曼滤波器问题由预计步骤,估计步骤,前进步骤组成。 在预计步骤中, t时状态的估计取决于所有到t-1 时的信息。在估算步骤中, 状态更新后, 估计要于时间t的实际观察比较。更新的状态是较早的推算和新观察的综合。 置于每一个成分的权重由“ Kalmangain”(卡尔曼增益) 决定,它取决于噪声 w 和 v。(噪声越小,新的观察的可信度越高,权重越大,反之亦然)。前进步骤意味着先前的“新”观察在准备下一轮预计和估算时变成了“旧” 观察。 在任何时间可以进行任何长度的预测(通过提前状态转换)。
4、组合预测模型
组合预测法是对同一个问题,采用多种预测方法。组合的主要目的是综合利用各种方法所提供的信息,尽可能地提高预测精度。组合预测有 2 种基本形式,一是等权组合, 即各预测方法的预测值按相同的权数组合成新的预测值;二是不等权组合,即赋予不同预测方法的预测值不同的权数。 这 2 种形式的原理和运用方法完全相同,只是权数的取定有所区别。 根据经验,采用不等权组合的组合预测法结果较为准确。
5、BP神经网络预测模型
BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛的神经网络模型,多用于函数逼近、模型识别分类、数据压缩和时间序列预测等。点击打开链接(BP神经网络预测实例)
❷ 根据以前的数据预测未来的行为用的是什么数据挖掘方法
数据挖掘(Data Mining)就是从大量数据中发现潜在规律、提取有用知识的方法和技术。因为与数据库密切相关,又称为数据库知识发现(Knowledge Discovery in Databases,KDD) ,就是将高级智能计算技术应用于大量数据中,让计算机在有人或无人指导的情况下从海量数据中发现潜在的,有用的模式(也叫知识)。
广义上说,任何从数据库中挖掘信息的过程都叫做数据挖掘。从这点看来,数据挖掘就是BI(商业智能)。但从技术术语上说,数据挖掘(Data Mining)特指的是:源数据经过清洗和转换等成为适合于挖掘的数据集。数据挖掘在这种具有固定形式的数据集上完成知识的提炼,最后以合适的知识模式用于进一步分析决策工作。从这种狭义的观点上,我们可以定义:数据挖掘是从特定形式的数据集中提炼知识的过程。数据挖掘往往针对特定的数据、特定的问题,选择一种或者多种挖掘算法,找到数据下面隐藏的规律,这些规律往往被用来预测、支持决策。
数据挖掘的主要功能
1.分类:按照分析对象的属性、特征,建立不同的组类来描述事物。例如:银行部门根据以前的数据将客户分成了不同的类别,现在就可以根据这些来区分新申请贷款的客户,以采取相应的贷款方案。
2.聚类:识别出分析对内在的规则,按照这些规则把对象分成若干类。例如:将申请人分为高度风险申请者,中度风险申请者,低度风险申请者。
3.关联规则和序列模式的发现:关联是某种事物发生时其他事物会发生的这样一种联系。例如:每天购买啤酒的人也有可能购买香烟,比重有多大,可以通过关联的支持度和可信度来描述。与关联不同,序列是一种纵向的联系。例如:今天银行调整利率,明天股市的变化。
4.预测:把握分析对象发展的规律,对未来的趋势做出预见。例如:对未来经济发展的判断。
5.偏差的检测:对分析对象的少数的、极端的特例的描述,揭示内在的原因。例如:在银行的100万笔交易中有500例的欺诈行为,银行为了稳健经营,就要发现这500例的内在因素,减小以后经营的风险。
需要注意的是:数据挖掘的各项功能不是独立存在的,在数据挖掘中互相联系,发挥作用。
数据挖掘的方法及工具
作为一门处理数据的新兴技术,数据挖掘有许多的新特征。首先,数据挖掘面对的是海量的数据,这也是数据挖掘产生的原因。其次,数据可能是不完全的、有噪声的、随机的,有复杂的数据结构,维数大。最后,数据挖掘是许多学科的交叉,运用了统计学,计算机,数学等学科的技术。以下是常见和应用最广泛的算法和模型:
(1) 传统统计方法:① 抽样技术:我们面对的是大量的数据,对所有的数据进行分析是不可能的也是没有必要的,就要在理论的指导下进行合理的抽样。② 多元统计分析:因子分析,聚类分析等。③ 统计预测方法,如回归分析,时间序列分析等。
(2) 可视化技术:用图表等方式把数据特征用直观地表述出来,如直方图等,这其中运用的许多描述统计的方法。可视化技术面对的一个难题是高维数据的可视化。
职业能力要求
基本能力要求
数据挖掘人员需具备以下基本条件,才可以完成数据挖掘项目中的相关任务。
一、专业技能
硕士以上学历,数据挖掘、统计学、数据库相关专业,熟练掌握关系数据库技术,具有数据库系统开发经验
熟练掌握常用的数据挖掘算法
具备数理统计理论基础,并熟悉常用的统计工具软件
二、行业知识
具有相关的行业知识,或者能够很快熟悉相关的行业知识
三、合作精神
具有良好的团队合作精神,能够主动和项目中其他成员紧密合作
四、客户关系能力
具有良好的客户沟通能力,能够明确阐述数据挖掘项目的重点和难点,善于调整客户对数据挖掘的误解和过高期望
具有良好的知识转移能力,能够尽快地让模型维护人员了解并掌握数据挖掘方法论及建模实施能力
进阶能力要求
数据挖掘人员具备如下条件,可以提高数据挖掘项目的实施效率,缩短项目周期。
具有数据仓库项目实施经验,熟悉数据仓库技术及方法论
熟练掌握SQL语言,包括复杂查询、性能调优
熟练掌握ETL开发工具和技术
熟练掌握Microsoft Office软件,包括Excel和PowerPoint中的各种统计图形技术
善于将挖掘结果和客户的业务管理相结合,根据数据挖掘的成果向客户提供有价值的可行性操作方案
应用及就业领域
当前数据挖掘应用主要集中在电信(客户分析),零售(销售预测),农业(行业数据预测),网络日志(网页定制),银行(客户欺诈),电力(客户呼叫),生物(基因),天体(星体分类),化工,医药等方面。当前它能解决的问题典型在于:数据库营销(Database Marketing)、客户群体划分(Customer Segmentation & Classification)、背景分析(Profile Analysis)、交叉销售(Cross-selling)等市场分析行为,以及客户流失性分析(Churn Analysis)、客户信用记分(Credit Scoring)、欺诈发现(Fraud Detection)等等,在许多领域得到了成功的应用。如果你访问着名的亚马逊网上书店(),会发现当你选中一本书后,会出现相关的推荐数目“Customers who bought this book also bought”,这背后就是数据挖掘技术在发挥作用。
数据挖掘的对象是某一专业领域中积累的数据;挖掘过程是一个人机交互、多次反复的过程;挖掘的结果要应用于该专业。因此数据挖掘的整个过程都离不开应用领域的专业知识。“Business First, technique second”是数据挖掘的特点。因此学习数据挖掘不意味着丢弃原有专业知识和经验。相反,有其它行业背景是从事数据挖掘的一大优势。如有销售,财务,机械,制造,call center等工作经验的,通过学习数据挖掘,可以提升个人职业层次,在不改变原专业的情况下,从原来的事务型角色向分析型角色转变。从80年代末的初露头角到90年代末的广泛应用,以数据挖掘为核心的商业智能(BI)已经成为IT及其它行业中的一个新宠。
数据采集分析专员
职位介绍:数据采集分析专员的主要职责是把公司运营的数据收集起来,再从中挖掘出规律性的信息来指导公司的战略方向。这个职位常被忽略,但相当重要。由于数据库技术最先出现于计算机领域,同时计算机数据库具有海量存储、查找迅速、分析半自动化等特点,数据采集分析专员最先出现于计算机行业,后来随着计算机应用的普及扩展到了各个行业。该职位一般提供给懂数据库应用和具有一定统计分析能力的人。有计算机特长的统计专业人员,或学过数据挖掘的计算机专业人员都可以胜任此工作,不过最好能够对所在行业的市场情况具有一定的了解。
求职建议:由于很多公司追求短期利益而不注重长期战略的现状,目前国内很多企业对此职位的重视程度不够。但大型公司、外企对此职位的重视程度较高,随着时间的推移该职位会有升温的趋势。另外,数据采集分析专员很容易获得行业经验,他们在分析过程中能够很轻易地把握该行业的市场情况、客户习惯、渠道分布等关键情况,因此如果想在某行创业,从数据采集分析专员干起是一个不错的选择。
市场/数据分析师
1. 市场数据分析是现代市场营销科学必不可少的关键环节: Marketing/Data Analyst从业最多的行业: Direct Marketing (直接面向客户的市场营销) 吧,自90年代以来, Direct Marketing越来越成为公司推销其产品的主要手段。根据加拿大市场营销组织(Canadian Marketing Association)的统计数据: 仅1999年一年 Direct Marketing就创造了470000 个工作机会。从1999至2000,工作职位又增加了30000个。为什么Direct Marketing需要这么多Analyst呢? 举个例子, 随着商业竞争日益加剧,公司希望能最大限度的从广告中得到销售回报, 他们希望能有更多的用户来响应他们的广告。所以他们就必需要在投放广告之前做大量的市场分析工作。例如,根据自己的产品结合目标市场顾客的家庭收入,教育背景和消费趋向分析出哪些地区的住户或居民最有可能响应公司的销售广告,购买自己的产品或成为客户,从而广告只针对这些特定的客户群。这样有的放矢的筛选广告的投放市场既节省开销又提高了销售回报率。但是所有的这些分析都是基于数据库,通过数据处理,挖掘,建模得出的,其间,市场分析师的工作是必不可少的。
2. 行业适应性强: 几乎所有的行业都会应用到数据, 所以作为一名数据/市场分析师不仅仅可以在华人传统的IT行业就业,也可以在政府,银行,零售,医药业,制造业和交通传输等领域服务。
现状与前景
数据挖掘是适应信息社会从海量的数据库中提取信息的需要而产生的新学科。它是统计学、机器学习、数据库、模式识别、人工智能等学科的交叉。在中国各重点院校中都已经开了数据挖掘的课程或研究课题。比较着名的有中科院计算所、复旦大学、清华大学等。另外,政府机构和大型企业也开始重视这个领域。
据IDC对欧洲和北美62家采用了商务智能技术的企业的调查分析发现,这些企业的3年平均投资回报率为401%,其中25%的企业的投资回报率超过600%。调查结果还显示,一个企业要想在复杂的环境中获得成功,高层管理者必须能够控制极其复杂的商业结构,若没有详实的事实和数据支持,是很难办到的。因此,随着数据挖掘技术的不断改进和日益成熟,它必将被更多的用户采用,使更多的管理者得到更多的商务智能。
根据IDC(International Data Corporation)预测说2004年估计BI行业市场在140亿美元。现在,随着我国加入WTO,我国在许多领域,如金融、保险等领域将逐步对外开放,这就意味着许多企业将面临来自国际大型跨国公司的巨大竞争压力。国外发达国家各种企业采用商务智能的水平已经远远超过了我国。美国Palo Alto 管理集团公司1999年对欧洲、北美和日本375家大中型企业的商务智能技术的采用情况进行了调查。结果显示,在金融领域,商务智能技术的应用水平已经达到或接近70%,在营销领域也达到50%,并且在未来的3年中,各个应用领域对该技术的采纳水平都将提高约50%。
现在,许多企业都把数据看成宝贵的财富,纷纷利用商务智能发现其中隐藏的信息,借此获得巨额的回报。国内暂时还没有官方关于数据挖掘行业本身的市场统计分析报告,但是国内数据挖掘在各个行业都有一定的研究。据国外专家预测,在今后的5—10年内,随着数据量的日益积累以及计算机的广泛应用,数据挖掘将在中国形成一个产业。
众所周知,IT就业市场竞争已经相当激烈,而数据处理的核心技术---数据挖掘更是得到了前所未有的重视。数据挖掘和商业智能技术位于整个企业IT-业务构架的金字塔塔尖,目前国内数据挖掘专业的人才培养体系尚不健全,人才市场上精通数据挖掘技术、商业智能的供应量极小,而另一方面企业、政府机构和和科研单位对此类人才的潜在需求量极大,供需缺口极大。如果能将数据挖掘技术与个人已有专业知识相结合,您必将开辟职业生涯的新天地!
职业薪酬
就目前来看,和大多IT业的职位一样,数据仓库和数据挖掘方面的人才在国内的需求工作也是低端饱和,高端紧缺,在二线成熟,高端数据仓库和数据挖掘方面的人才尤其稀少。高端数据仓库和数据挖掘人才需要熟悉多个行业,至少有3年以上大型DWH和BI经验,英语读写流利,具有项目推动能力,这样的人才年薪能达到20万以上。
职业认证
1、SAS认证的应用行业及职业前景
SAS全球专业认证是国际上公认的数据挖掘和商业智能领域的权威认证,随着我国IT环境和应用的日渐成熟,以上两个领域将有极大的行业发展空间。获取SAS全球专业认证,为您在数据挖掘、分析方法论领域积累丰富经验奠定良好的基础,帮助您开辟职业发展的新天地。
2、SAS认证的有效期
目前SAS五级认证没有特定有效期,但是时间太久或版本太老的认证证书会有所贬值。
3、五级认证的关系
五级认证为递进式关系,即只有通过上一级考试科目才能参加下一级认证考试。
4、SAS全球认证的考试方式
考试为上机考试,时间2个小时,共70道客观题。
相关链接
随着中国物流行业的整体快速发展,物流信息化建设也取得一定进展。无论在IT硬件市场、软件市场还是信息服务市场,物流行业都具有了一定的投资规模,近两年的总投资额均在20-30亿元之间。政府对现代物流业发展的积极支持、物流市场竞争的加剧等因素有力地促进了物流信息化建设的稳步发展。
易观国际最新报告《中国物流行业信息化年度综合报告2006》中指出,中国物流业正在从传统模式向现代模式实现整体转变,现代物流模式将引导物流业信息化需求,而产生这种转变的基本动力来自市场需求。报告中的数据显示:2006-2010年,传统物流企业IT投入规模将累计超过100亿元人民币。2006-2010年,第三方物流企业IT投入规模将累计超过20亿元人民币。
由于目前行业应用软件系统在作业层面对终端设备的硬件提出的应用要求较高,而软件与硬件的集成性普遍不理想,对应性单一,因此企业将对软件硬件设备的集成提出更高要求。
物流行业软件系统研发将更多的考虑运筹学与数据挖掘技术,专业的服务商将更有利于帮助解决研发问题。
物流科学的理论基础来源于运筹学,并且非常强调在繁杂的数据处理中找到关联关系(基于成本-服务水平体系),因此数据挖掘技术对于相关的软件系统显得更为重。
❸ 预测未来油价改用什么数学建模模型
建议用BP神经网络,并且结合主成分分析法。
一些常用的方法,比如多元回归和时间序列方法构建价格预测模型,是一种典型的线性预测模型,能够预测价格变化的线性关系,对中长期预测具有一定的局限性。
神经网络是一种智能预测方法,需要对对象建立准确的数学模型,能够准确描述对象的特征,具有学习能力强、并行处理等特点,在复杂系统等领域的建模中得到了广泛的应用,也为石油价格预测提供了思路。但是由于影响石油价格的因子比较多,且数据中含有噪声,直接采用神经网络学习收敛速度慢,且预测精度低,因此需要对石油价格影响因子预处理。针对石油价格变化的特点,提出一种基于主成分分析和BP神经网络的石油价格预测模型。该模型采用定性分析选择出影响因子,再利用主成分分析方法对石油价格影响因子进行筛选,选取最主要的几个影响因素,最后通过神经网络能够逼近非线性连续函数的能力对石油价格进行预测,从而实现了石油价格的准确预测。
价格的预测过程
BP神经网络的预测过程如下:
1、收集石油价格以及影响因子,并获取相关数据。
2、对石油价格影响因子进行主成分分析,并筛选出贡献率大的主成分。
3、将石油价格数据分为训练样本和预测样本。
4、采用BP神经网络对训练样本进行训练,并找出模型的最优参数。
5、利用最有参数建立BP神经网络预测模型,对预测样本进行预测。
❹ 预测模型还是解释模型。两者区别及联系
欢迎访问我的个人网站: data-scientist
统计模型是一个在开发和测试理论中强有力的工具,包括因果解释,预测和描述。在很多原则中都是用统计模型,并且认为统计模型有很高的解释性和预测能力。解释性和预测性的冲突是普遍存在的,因此我们必须了解和处理它们之间的关系。
1.introction
1.1解释性模型
Causal theoretical model. 统计模型用于测试因果假设,通常是测量变量X对Y的潜在影响。
解释模型的作用通常是通过因果假设来进行理论创建。
1.2 预测性模型
预测同学通常是通过统计模型和数据挖掘来进行预测新的数据或未来。通过新的观测X来预测新的结果Y。预测包括时序预测,点预测,区间预测,分布预测活拍下预测,通常使用贝叶斯,频繁项,数据挖掘算法和统计模型。
1.3 描述性模型
描述性模型通常是用一种更简洁的方式来总结和表示数据的结构。
1.4 预测模型的科学价值
通常统计学家认为预测模型不具有科学性,所以被统计学家所抛弃。即使在统计学派中也被分为两类,预测性作为主要目的被认为是unacademic。
当然预测模型也是必要的科学尝试。预测模型的主要功能
(1)大规模的丰富的数据集通常很复杂,并且模式难以进行假设,使用预测模型可以解释一些潜在的新的机制。
(2)预测模型可以被用于发现新的测量和评价的体系
(3)对于复杂模式和关系的挖掘,预测模型通常可以得到更好的结果。
(4)科学发展需要严格的相关研究,预测模型是一种介于理论和实验的产物.虽然解释模型可以解释变量之间的因果关系,但是预测能力可能不如预测模型
(5)预测能力评估提供一种straightforward的方式来比较解释模型的预测能力
(6)预测模型来量化预测能力,创建benchmark上十分重要。因为预测模型可以有相比于解释模型更高的预测能力。一个较低的预测模型通常意味着我们需要进行新的数据收集,测量方式,或新的经验注意的方式。当解释模型的结果接近预测模型时表示我们对现象的理解已经很全面了。另一方面,当解释性模型的结果距离预测模型的benchmark较低时,说明我们还需要接下来的探索和理解。
1.5预测和解释模型的不同
预测模型和解释模型的冲突在于它们的科学性的根基。
预测模型和解释模型的不同在于数据不能精确的来表示和结果之间的关系。
在解释模型中,X,y时估计函数f的工具,同时,x,y也用于测试因果假设。
但是在预测模型中,函数f时工具,用于产生产生对y的预测。事实上,即使潜在的因果关系是y=f(x),但是y=f1(x)可能在x1而不是x上取得更好的结果,因为估计可能是有偏的估计,有偏估计可能会有更好的结果。
因果关联 :在解释性模型中f代表着潜在的因果关系的函数,X被认为可以造成y。而预测模型中,函数f是找到X,Y 之间的关系。
理论-数据 : 在解释模型中,f是完全建立在支持解释预先估计的在X,Y 之间的因果关系。而在预测模型中,直接的解释X,Y 之间的因果关系是不需要的,虽然有时候一些透明的f是期望的。
Retrospective-prospective: 预测模式是forward-looking,f时用于预测新的数据。相反的是在解释模型中,更多的是回溯,f用于检测现有的数据和假说。
Bias-variance: 方差和偏差,
[图片上传失败...(image-8f86e5-1553739784176)]
在解释性模型中,我们的目标是最小化bias来获得最精确的表达。相反,预测模型寻找最小化的bias和estimation variance的组合误差,有时会牺牲一些理论的准确度来提高经验的准确度,
1.6 void in the statistics literature
使用预测模型和解释模型的争论一直存在,但是并没有被翻译成统计语言。在模型选择中一直存在着争议,
There may be no significant difference between the point of view of inferring the true structure and that of making a prediction if an infinitely large quantity of data is available or if the data are noiseless. However, in modeling based on a finite quantity of real data, there is a significant gap between these two points of view, because an optimal model for prediction purposes may be different from one obtained by estimating the ‘true model.’
2.1 研究设计和数据收集
(1)
对于解释和预测,数据的收集也不太一样,考虑样本的大小。
在解释模型中,目标是估计theory-based f 并且来使用它去推断,统计的能力是主要的考虑。减少bias需要足够的数据来进行模型测试。到达一定数量的数据后,超过的部分对于精度的提高可以忽略不计,而对于预测模型,f通常是数据决定的,通常更多的数据会带来更好的结果。
(2)对于抽样的方式:
在hierarchical data中,对于预测模型,group size的增加比group number 更有效,而解释模型则相反。
(3)实验设计的考量:
解释模型需要更多的可解释数据,但是这受限于实验环境和可获得的资源,同时解释需要需要非常干净的数据,
预测模型需要更多的其他的数据,数据维度越多越好。
(4)数据收集的设施:
解释性模型需要构建一个比较好的理论来支持,比如item的心理上含义。预测模型更多的是要保证预测数据的质量和数据的含义清楚。
(5)实验设计的方式:
Factorial designs 关注与因果解释,找到结果的含义
Response surface methodology design, 使用优化技术和非线性变换来提高解释性
2.2 数据准备
(1)缺失值的处理
如果你有很少一部分的缺失数据,对于解释模型,可以直接扔掉。而对于预测模型,则不需要扔掉这些数据。
在回归模型,对缺失变量进行mmy处理可以增加预测模型的表现,但是对于解释模型却不符合要求。
确实值的意义是否对预测有影响或者对于预测的含义不明确,所以用确实值来做解释模型通常不太合理。
(2)数据切分data partitioning
通常避免过拟合的方式是在保留测试集上进行评估模型,防止过拟合,通过交叉验证,或其他采样的方式,boost 来使得预测模型在小数据集上进行。
数据切分的目的是为了最小化方差和偏差之和。对于预测模型来说更小的样本通常会导致更大的bias,因此通过data partitioning 可以有效的提高模型的表现,但是对于解释模型的帮助很小。对于预测模型,数据切分是一个关键的步骤。
对于解释模型,做data partitioning 通常用于评估模型的鲁棒性和预测能力。
2.3 EDA
在解释模型中,EDA指向特定的因果关系,然而在预测模型中,EDA更多的是free-form,为了支撑模型来找个更多未知的关系,可能并没有正式的公式。
eda可以是毫无目的的探索,或者来验证已有的假设,评估潜在的模型,共线性和变量的转换。
降维,在预测模型中可以减少采样方差。PCA或其他降维方式解释性会比较差,但是可以作为压缩变量变量放入模型中,
2.4 变量选择。
在解释模型中,变量选择根据变量之间的因果结果和变量自身的操作。更加关注因果关系
预测模型主要关系x,y之间的关联关系而不是因果关系。主要关注响应,数据质量,数据的可获得性。对于时间序列的建模,X必须是在y之前能获得的。
2.5 选择方式(choice of methods)
causation–association, theory–data, retrospective–prospective and bias–variance
四种不同的方式将会导致不同的结果。解释性模型可以很容易的连接到潜在的理论。
对于预测模型,顶部的优先级模型可以产生更加准确的结果,但是模型f可能更加未知。虽然模型的透明性很多情况下未知,但是有很多情况下都是先提高准确度,然后再试图理解模型。
Bias-variance方面对于提高预测模型比较有效,比如ridge regression和lasso, 通过对稀疏惩罚的方式来引入bias但是降低variance.另外还有ensembke模型和bagging, boosting。
2.6 model evaluation and selection
从一系列的模型中选择最优的模型,评估模型的表现在解释模型和预测模型中采用不同的方式。
Validation:
在解释模型中,验证包含两个部分,模型验证f是否能够表示F和模型是能能很好的fit现有数据。
而对于预测模型,主要关注的是泛化能力,即模型在保留测试集上的表现。
对于解释模型,验证主要考率模型的系数是否over/under-specification,goodness of fit tests, 还有一些模型的诊断包括残差分析 resial analysis.
对于预测模型,最大的挑战是防止过拟合,通过对比测试集和训练集的表现,来检查是否出现过拟合。
对于大规模的数据验证,对于解释模型和预测模型不太相同。比如说检查共线性对于解释模型非常相关,多重共线性可以导致标准差的增大,因此很多已有的文献来剔除共线性。相反对于预测模型来说,多重共线性不是罪恶的。
去重共线性对于系数的解释能力很关键,和考率一个变量对另一个变量影响是十分关键。另外还可以评估变量变化对于结果的影响。监测波动要去除共线性。
model evaluation
考虑两方面的能力,解释能力和预测能力。
解释模型考虑变量对于结果的关系,研究者常用R2值和统计意义的F统计来表明对结果的影响。
相反预测模型聚焦于预测准确度和预测能力,考虑f在新数据上的表现。不同的任务需要考虑的评价指标不一样,例如ranking模型或者分类模型不一样。
model selection
在解释模型中,比较模型之前的解释能力。使用stepwise的方法来增加删除变量,变量的增删通过统计模型来清楚的表达。主要通过AIC,BIC来进行筛选。
AIC和BIC 提供估计不同的事情。 If the question of which estimator is better is to make sense, we must decide whether the average likelihood of a family [=BIC] or its predictive accuracy [=AIC] is what we want to estimate.
2.7 Model use and reporting
解释模型倾向于验证现有的因果推断理论,查看统计结果是否合理。
对于预测模型,f通常用于对新数据预测。在实际的应用中,目标通常专注让预测模型来支持科学研究,通过构建新的理论来产生新的假说,解释性模型的文章据记载模型理论构建和未被观测的参数和统计推断,预测部分聚焦于预测能力和比较不同的模型结果。
总结:
(1)在模型研究中,需要制定一个优化的目标
(2)即使目标是预测模型或者是解释模型,两方面的模型都要做来验证互相的结果。
对于预测模型,或许解释不是必须的,但是能够解释目的和重要性十分重要。
Reference:
[1] Shmueli G. To explain or to predict?[J]. Statistical science, 2010, 25(3): 289-310.
❺ 预测未来某一时刻的特征用什么模型
预测控制或称为模型预测控制(MPC)是仅有的成功应用于工业控制中的先进控制方法之一。
各类预测控制算法都有一些共同的特点,归结起来有三个基本特征:(1)预测模型,(2)有限时域滚动优化,(3)反馈校正。这三步一般由计算机程序在线连续执行。
预测控制是一种基于预测过程模型的控制算法,根据过程的历史信息判断将来的输入和输出。它强调模型的函数而非模型的结构,因此,状态方程、传递函数甚至阶跃响应或脉冲响应都可作为预测模型。预测模型能体现系统将来的行为,因此,设计者可以实验不同的控制律用计算机仿真观察系统输出结果。
预测控制是一种最优控制的算法,根据补偿函数或性能函数计算出将来的控制动作。预测控制的优化过程不是一次离线完成的,是在有限的移动时间间隔内反复在线进行的。移动的时间间隔称为有限时域,这是与传统的最优控制最大的区别,传统的最优控制是用一个性能函数来判断全局最优化。对于动态特性变化和存在不确定因素的复杂系统无需在全局范围内判断最优化性能,因此这种滚动优化方法很适用于这样的复杂系统。
预测控制也是一种反馈控制的算法。如果模型和过程匹配错误,或者是由于系统的不确定因素引起的控制性能问题,预测控制可以补偿误差或根据在线辨识校正模型参数。
虽然预测控制系统能控制各种复杂过程,但由于其本质原因,设计这样一个控制系统非常复杂,要有丰富的经验,这也是预测控制不能预期那样广泛得到应用的主要原因。
预测控制适用于先进过程控制(APC)和监督控制场合,其控制输出作用主要是跟踪设定值的变化。但预测控制并不能很好地处理调节控制难题。
模型预测控制是一种基于模型的闭环优化控制策略,已在炼油、化工、冶金和电力等复杂工业过程控制中得到广泛的应用。模型预测控制具有控制效果好、鲁棒性强等优点,可有效地克服过程的不确定性、非线性和关联性,并能方便处理过程被控变量和操纵变量中的各种约束。
预测控制算法种类较多,表现形式多种多样,但都可以用以下三条基本原理加以概括:①模型预测:预测控制的本质是在对过程的未来行为进行预测的基础上,对控制量加以优化,而预测是通过模型来完成的。②滚动优化 :预测控制的优化,是在未来一段时刻内,通过某一性能指标的最优化来确定未来的控制作用,这一性能指标涉及到系统未来的行为,并且在下一时刻只施加当前时刻控制作用,它是在线反复进行的,而且优化是有别于传统意义下的全局优化。③反馈校正 :预测控制是一种闭环控制算法,用预测模型预测未来的输出时,预测值与真实值之间存在一定的偏差,只有充分利用实际输出误差进行反馈校正,才能得到良好的控制效果。
目前,预测控制的研究范围主要涉及到以下方面,
(1)对现有基本算法作修正。如引入扰动观测器,采用变反馈校正系数等。
(2)单变量到多变量的推广。把只适合于稳定对象的算法推广到非自衡系统,把预测控制的应用范围推广到非线性及分布参数系统。
(3)优化目标函数的选取。如采用最小方差的目标函数、二范数的目标函数、无穷范数的目标函数等。
(4)预测模型的选取。尤其是在非线性预测控制中,非线性预测控制要比线性预测控制复杂得多。因而,目前研究主要集中在特殊的非线性模型,如Wiener模型,Bilinear模型、广义Hammerstein模型、Volterra模型等。
(5)引入大系统方法,实现递阶或分散的控制算法。
(6)将基本控制算法与先进的控制思想与结构相结合,如自适应预测控制、模糊预测控制、鲁捧预测控制、神经网络预测控制等。
目前,预测控制的应用几乎遍及各个工业领域,如:炼油、石化、化工、造纸、天然气、矿冶、食品加工、炉窑、航空、汽车等。其中全世界采用了以预测控制为核心的先进控制算法已经超过5000多例。国外着名的控制工程公司都开发研制了各自的商品化软件。预测控制的软件产品至今已走过了三代。第一代产品主要以Adersa公司的IDCOM和Shell Oil公司的DMC为代表,可处理无约束的预测控制问题。第二代以Shell Oil公司的QDMC为代表,它增加了处理输入输出有约束的多变量对象的技术。而目前的第三代产品,主要有Aspen公司的DMCplus和Honeywell公司的RMPCT,以及浙大中控软件公司的Adcon等,都已在炼油、化工、石化等工业生产过程中应用。
❻ 数模预测模型那些
01、线性回归
线性回归比较经典的模型之一,英国科学家FrancisGalton在19世纪就使用了"回归"一词,并且仍然是使用数据表示线性关系最有效的模型之一。线性回归是世界范围内,许多计量经济学课程的主要内容。学习该线性模型将让你在解决回归问题有方向,并了解如何用数学知识来预测现象。
04、随机森林
由于决策树对超参数和简单假设的敏感性,决策树的结果相当有限。当你深入了解后,你会明白决策树很容易过度拟合,从而得出的模型对未来缺乏概括性。随机森林的概念非常简单。有助于在不同的决策树之间实现多样化,从而提高算法的稳健性。就像决策树一样,你可以配置大量的超参数,以增强这种集成模型的性能。
❼ 如何用arima(0.1.1)(1.1.1)模型进行预测和模型检验r程序
arima模型全称为差分自回归移动平均模型:
arima模型是由博克思和詹金斯于70年代初提出的一着名时间序列预测方法,所以又称为box-jenkins模型、博克思-詹金斯法。
arima(p,d,q)称为差分自回归移动平均模型,AR是自回归,p为自回归项;MA为移动平均,q为移动平均项数,d为时间序列成为平稳时所做的差分次数。
arima模型是指将非平稳时间序列转化为平稳时间序列,然后将因变量仅对它的滞后值以及随机误差项的现值和滞后值进行回归所建立的模型。
arima模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程、自回归过程、自回归移动平均过程以及ARIMA过程。
arima模型将预测对象随时间推移而形成的数据序列视为一个随机序列,用一定的数学模型来近似描述这个序列。
这个模型一旦被识别后就可以从时间序列的过去值及现在值来预测未来值。
现代统计方法、计量经济模型在某种程度上已经能够帮助企业对未来进行预测。
❽ 预测经济趋势用什么模型
一般来说央行要用几个主打的巨无霸级别的模型,然后无数个小型模型。
现在央行用的巨无霸级别的模型叫DSGE,动态随机一般均衡模型,这个模型的思想是新凯恩斯主义下对几十年前的老一代宏观经济学的增强。简单来说,这个模型就是一个差分方程组系统,而且是非线性的,意思就是说非常难解,因为找不出稳定解,就不能做simulation,那么这样的模型拿来没用,没法跟政府高层沟通。
我以前在的芬兰央行就有几个这样的巨型模型,每次参数估计都要送给2000多台最高配置的主机同时进行计算,快的时候几小时拿结果,慢的时候要等个几周。
其次用的多的还有CGE,C是computing的意思,这种模型其实更加巨大,但是模型的宏观基础并不受经济学家喜欢,所以不常用,很多拿来当摆设。
其他超小模型那就多了,但一般都是用SVAR,因为央行不是统计局,做的模型都要理论基础,所以都要加一个经济结构在模型里面,所以才叫做Structural VAR。这些模型几乎每周都在做,央行领导一般对什么问题想要个解释,就会找到下面的研究部门马上做个小模型解释一下。
说实话,解释精度都非常差。原因很多,但最大的原因在于模型对想描述的世界提炼出了错误信息(比如加入了错误的变量,参数设置错误等)。
❾ 数据的波动太大,用什么模型预测比较好
用灰色预测比较好,灰色预测对于数据的有序性和个数要求不高,不过灰色预测对于短期预测比较有效,如果需要预测长期数据,数据量足够多,则用BP神经网络预测较好。
❿ 请问使用什么样的预测模型更好
具体点的话,你可以看些Markov chain, Bayesian time series.参考书有很多,大同小异随便找本看看就好。特别是Bayesian预测方法我觉得适合解决你的问题。简单的例子,天气预报,它会给出预测置信区间,以此检验你的数据稳定性。
没时间看书的话,就找些资料看天气预报的预测方法。这是最省时的方法。