导航:首页 > 数据处理 > 数据有多少个维度

数据有多少个维度

发布时间:2022-10-28 16:53:24

A. 一共有多少个维度分别是什么

维度,又称维数,是数学中独立参数的数目。在物理学和哲学的领域内,指独立的时空坐标的数目。0维是一点,没有长度。1维是线,只有长度。2维是一个平面,是由长度和宽度(或曲线)形成面积。3维是2维加上高度形成体积面。4维分为时间上和空间上的4维,人们说的4维经常是指关于时间的概念。(4维准确来说有两种。1.四维时空,是指三维空间加一维时间。2.四维空间,只指四个维度的空间。)四维运动产生了五维。
第六维是指思想,独立于常识中的时间与空间之外,第六维与时间性质相似,同是超出物理范畴,但又高于时间的维度。我们这个所处的宇宙无法超脱第六维,只在其中运行。正如计算机的程序一样,虽然程序的执行结果可能会产生对时空的影响,但程序本身只能在计算机中运行。
通常的理解是“点是0维、直线是1维、平面是2维、体是3维”。实际上这种说法中提到的概念是“前提”而不是“被描述对象”,被描述对象均是“点”。故其完整表述应为“点基于点是0维、点基于直线是1维、点基于平面是2维、点基于体是3维”。再进一步解释,在点上描述(定位)一个点就是点本身,不需要参数;在直线上描述(定位)一个点,需要1个参数(坐标值);在平面上描述(定位)一个点,需要2个参数(坐标值);在体上描述(定位)一个点,需要3个参数(坐标值)。
如果我们改变“对象”就会得到不同的结论,如:“直线基于平面是4维、直线基于体是6维、平面基于体是9维”。进一步解释,两点可确定一条直线,所以描述(定位)一条直线在平面上需要2×2个参数(坐标值)、在体上需要2×3个参数(坐标值);不共线的三点可确定一个平面,所以在体上描述(定位)一个平面需要3×3个参数(坐标值)。

B. 世界上有多少个维度

现在的普遍认识宇宙是4维的,1维时间加上3维空间。

90年代的M理论认为宇宙是11维的,但是这还只是理论物理学家提出来的,没有证据。

但是我们无法发现更高维度的空间或许是我们自身的局限性,举个例子:蚂蚁在地面上爬行,则它的眼里只有二维,在它的面前放上一粒米,他能看见,这时他认为米粒是存在的。

但是如果这时候一个人用筷子吧米粒夹起来,提到空中,蚂蚁看不见了,他就会认为在他的二维世界中米粒消失了,因为他不会想到抬起头去看,他的世界是二维的。

人类也是一样,或许有更高的维度,但是我们无法观测到。所以目前的主流看法是4维时空。

(2)数据有多少个维度扩展阅读:

维度,又称维数,是数学中独立参数的数目。在物理学和哲学的领域内,指独立的时空坐标的数目。

0维是一个无限小的点,没有长度。

1维是一条无限长的线,只有长度。

2维是一个平面,是由长度和宽度(或部分曲线)组成面积。

3维是2维加上高度组成体积。

4维分为时间上和空间上的4维,人们说的4维经常是指关于物体在时间线上的转移。(4维准确来说有两种。1,四维时空,是指三维空间加一维时间。2,四维空间,只指四个维度的空间。)

5维由思维运动产生。

从广义上讲:维度是事物“有联系”的抽象概念的数量,“有联系”的抽象概念指的是由多个抽象概念联系而成的抽象概念,和任何一个组成它的抽象概念都有联系,组成它的抽象概念的个数就是它变化的维度,如面积。此概念成立的基础是一切事物都有相对联系。

从哲学角度看,人们观察、思考与表述某事物的“思维角度”,简称“维度”。例如,人们观察与思考“月亮”这个事物,可以从月亮的“内容、时间、空间”三个思维角度去描述;也可以从月亮的“载体、能量、信息”三个思维角度去描述。

维度-网络

C. 财务数据多维度的运算是什么意思都有哪些维度啊举几个例子就行。

空间一共有十二个维度,也有其他说法,零维是一个点,比如奇点,质量无限大,引力无限大,一二三维是线面体,四维空间是在三维空间上再加一条时间轴,五维度是时间的分岔,你把三维空间看做一条坐标轴,然后在和两条时间轴连在一起,建立一个“空间坐标系”这个坐标系表示的是五维空间,至于以上的就复杂了,不太好理解,六维是宇宙的无限,无限个起点,无限个结局,无限的空间,无限条路线,我说的并不科学具体,你可以暂时这么理解,七维以上我还没太弄懂,就这些,,

D. 维度有几个

你好!

维度,又称维数,是数学中独立参数的数目。在物理学和哲学的领域内,指独立的时空坐标的数目。0维是一点,没有长度。1维是线,只有长度。2维是一个平面,是由长度和寛度(或曲线)形成面积。3维是2维加上高度形成体积面。

我们周围的空间有3个维(上下,前后,左右)。我们可以往上下、东南西北移动,其他方向的移动只需用3个三维空间轴来表示。向下移就等于负方向地向上移,向西北移就只是向西和向北移的混合。

E. 饼图可以呈现多少维度的数据

饼图可以呈现三个维度的数据。饼图可呈现二维饼图、三维饼图和圆环图三个大类的维度数据。在设计报表的过程中,如果只是一个维度和数值的话,展示的是一个饼图,如果是展示一个分类和多个指标的话,会生成多个饼图;每个饼图展示的指标都不一样。

饼图的特点

饼图英文学名为Sector Graph,又名Pie Graph。仅排列在工作表的一列或一行中的数据可以绘制到饼图中。饼图显示一个数据系列中各项的大小与各项总和的比例。饼图中的数据点显示为整个饼图的百分比。

饼图是十分形象的图表,他们给人以直观的对数据的感受。饼图可以看成数据的合计后的占比,适合突出表现份额。饼图最大的优点在于其多样性,能够呈现个体与整体的占比和比较单个观测值的百分比。简单易操作,十分容易上手。

F. 面板数据包含哪几个维度

面板数据,即Panel Data,也叫“平行数据”,是指在时间序列上取多个截面,在这些截面上同时选取样本观测值所构成的样本数据。其有时间序列和截面两个维度,当这类数据按两个维度排列时,是排在一个平面上,与只有一个维度的数据排在一条线上有着明显的不同,整个表格像是一个面板,所以把panel data译作;面板数据;。但是,如果从其内在含义上讲,把panel data译为;时间序列-截面数据; 更能揭示这类数据的本质上的特点。也有译作;平行数据;或;TS-CS数据(Time Series - Cross Section);。

G. 数据质量有几种维度分别是什么


  • 完整性

  • 数据完整性问题包含数据条目不完整,数据属性不完整等

  • 一致性多源数据的数据模型不一致,如命名不一致,数据编码不一致,含义不一致,生命周期不一致等

  • 准确性准确性也叫可靠性,不可靠的数据可能会导致严重的问题,会造成有缺陷的方法和糟糕的决策

  • 唯一性

  • 用于识别和度量重复数据,冗余数据,重复数据是导致业务无法协同,流程无法追溯的重要因素,也是数据治理需要解 决的最基本的数据问题

  • 关联性数据关联性问题是指存在数据关联的数据关系缺失或错误,例如:函数关系、相关系数、主外键关系、索引关系等。存在数据关联性问题,会直接影响数据分析的结果,进而影响管理决策。

  • 真实性

  • 数据必须真实准确的反映客观的实体存在或真实的业务,真 实可靠的 原始统 计数据是企业统计工作的灵魂,是一切管理工作的基础,是经 营 者进行正确经营决策必不可少的第一手 资料。

  • 及时性数据的及时性(In-time)是指能否在需要的时候获到数据,数据的及时性与企业的数据处理速度及效率有直接的关系,是影响业务处理和管理效率的关键指标。

  • 逻辑检查不同表字段之间可能会有逻辑关联,需要稽核

  • 离群值检查部分数据可能会偏离其他数据,比如同一个商品金额大家都是100元,而有一条数据是1W

  • 自定义规则由需求方自定义相关规则

  • 波动稽核

  • 与上周环比稽核波动情况

  • 强弱规则

  • 每个规则的权重应该是不一样的,需要配置优先级,这对后续的告警方式是有帮助的

    我们最终的目的是希望做到页面可配置

H. 数据质量与数据质量八个维度指标

数据质量与数据质量八个维度指标

数据的质量直接影响着数据的价值,并且直接影响着数据分析的结果以及我们以此做出的决策的质量。质量不高的数据不仅仅是数据本身的问题,还会影响着企业经营管理决策;错误的数据还不如没有数据,因为没有数据时,我们还会基于经验和基于常识的判断来做出不见得是错误的决策,而错误的数据会引导我们做出错误的决策。因此数据质量是企业经营管理数据治理的关键所在。

数据的质量可以从八个方面进行衡量,每个维度都从一个侧面来反映数据的品相。八个维度分别是:准确性、真实性、完整性、全面性、及时性、即时性、精确性和关联性。

我们在比较两个数据集的品相的时候往往采用这种图形表示。比如说,常规来讲内部数据采集的准确性、真实性、完整性高,而全面性、及时性、即时性、精确性和关联性方面取决于企业内部对数据的重视程度以及采用的技术手段的先进性有关;外部数据集,比如说微博数据、互联网媒体数据等,其全面性、及时性和即时性都可以通过技术手段,如网络爬虫等得到提高,但在准确性、真实性、精确性上难以保证,也难以控制,在关联性方面取决于数据采集和挖掘的相关技术。

我们也可以用这个模型来衡量公司内部各个职能部门数据的品相。下图是个示意,通过数据质量8大指标的评价,我们可以对企业内部数据治理有针对性地采取措施去提高企业的数据质量。

数据的准确性

数据的准确性(Accuracy)是指数据采集值或者观测值和真实值之间的接近程度,也叫做误差值,误差越大,准确度越低。数据的准确性由数据的采集方法决定的。

数据的精确性

数据的精确性(Precision)是指对同一对象的观测数据在重复测量时所得到不同数据间的接近程度。精确性,也可以叫精准性。精确性与我们数据采集的精度有关系。精度高,要求数据采集的粒度越细,误差的容忍程度越低。

测量人的身高,我们可以精确到厘米,多次测量差异只会在厘米级别;测量北京到上海的距离,我们精确到公里,多次测量结果间的差异会在公里级别;采用游标卡尺测量一个零件的厚度,可以精确到1/50毫米,多次测量的结果间的误差也只会在1/50毫米间。采用的测量方法和手段直接影响着数据的精确性。

数据的真实性

数据的真实性,也叫数据的正确性(Rightness)。数据的正确性取决于数据采集过程的可控程度,可控程度高,可追溯情况好,数据的真实性容易得到保障,而可控程度低或者无法追溯,数据造假后无法追溯,则真实性难以保证。

为了提高数据的真实性,采用无人进行过程干涉的智能终端直接采集数据,能够更好地保证所采集数据的真实性,减少人为干预,减少数据造假,从而让数据更加正确地反应客观事物。

数据的及时性

数据的及时性(In-time)就是数据能否在需要的时候得到保证。我们月初会对上个月的经营和管理数据进行统计汇总,这些数据能否及时处理完成,财务能否在月度关账后及时核算。数据的及时性是我们数据分析和挖掘及时性的保障。如果公司的财务核算复杂,核算速度缓慢,上个月的数据在月中才能统计汇总完成,等需要调整财务策略的时候,已经到了月底了,一个月已经快过完了。特别是公司做大了之后,业务覆盖多个市场、多个国家,数据不能及时汇总,会影响到高层决策的及时程度。

数据的及时性与企业数据处理的速度和效率有直接的关系,为了提高数据的及时性,越来越多的公司采用管理信息系统,并在管理信息系统中附加各种自动数据处理功能,能够在数据上传系统之后自动完成绝大部分报表,从而保证数据处理的效率。计算机自动处理中间层数据是提高企业数据处理效率的有效手段。

除了保证数据采集的及时性和数据处理的效率问题外,还需要从制度和流程上保证数据传输的及时性。数据报表完成了,要及时或者在要求的时间范围内发送到指定的部门,或者上传到指定的存储空间。

数据的即时性

数据的即时性是指数据采集时间节点和数据传输的时间节点,一个数据在数据源头采集后立即存储,并立即加工呈现,就是即时数据,而经过一段时间之后再传输到信息系统中,则数据即时性就稍差。

微博的数据采集,当用户发布了微博,数据立即能够被抓取和加工,会生成即时微博数据报告,并随着时间推移,数据不断变化,我们可以称作是即时采集和处理的。一个生产设备的仪表即时反应着设备的温度、电压、电流、气压等数据,这些数据生成数据流,随时监控设备的运行状况,这个数据可以看作是即时数据。而当设备的即时运行数据存储下来,用来分析设备运行状况与设备寿命的关系,这些数据就成为历史数据。

数据的完整性

数据的完整性是从数据采集到的程度来衡量的,是应采集和实际采集到数据之间的比例。一条信息采集12个数据点,如我们采集员工信息数据的时候,要求填写姓名、出生日期、性别、民族、籍贯、身高、血型、婚姻状况、最高学历、最高学历专业、最高学历毕业院校、最高学历毕业时间等12项信息,而某一员工仅仅填写了部分信息,如只填写了其中的5项,则该员工所填写数据的完整性只有一半。

一个公司数据的完整性体现着这个公司对数据的重视程度。要求采集数据而实际上并未完整采集,只采集了一部分,这就是不完整的,往往是公司对数据采集质量要求不到位导致的。公司要求每个人都填写完整的个人信息表,而有部分员工拒绝填写,公司2000员工,只有1200人填写了完整的个人信息表,则这个数据集就是不完整的。

另外,对于动态数据,我们可以从时间轴上去衡量数据采集的完整性。比如,我们要求每小时采集一次数据,每天会形成24个数据点,记录为24条数据,但是员工渎职,只记录了20次,那么这个数据集也是不完整的。

数据的全面性

数据的全面性和完整性不同,完整性衡量的是应采集和实际采集的差异。而全面性指的是数据采集点的遗漏情况。比如说,我们要采集员工行为数据,我们只采集了员工上班打卡和下班打卡的数据,上班时间的员工行为数据并未采集,或者没有找到合适的方法来采集。那么,这个数据集就是不全面的。

我们描述一个产品的包装,仅仅描述了产品包装的正面和背面,没有记录产品包装的侧面,则就是不全面的。我们记录一个客户的交易数据,我们只采集了客户订单中的产品、订单中产品的价格和数量,而没有采集客户送货地址、采购时间,这个数据采集就是不全面的。

腾讯QQ和微信的用户数据记录了客户交流沟通的数据;阿里和京东的用户数据记录了用户的购买交易数据;网络地图记录了用户出行的数据;大众点评和美团记录了客户餐饮娱乐的数据。对于全面描述一个人的生活的衣食住行各方面,这些公司的数据都是不全面的,而如果把他们的数据整合起来,则会形成更加全面的数据。所以说,数据的全面性说一个相对的概念。过度追求数据的全面性说不现实的。

数据的关联性

数据的关联性是指各个数据集之间的关联关系。比如员工工资数据和员工绩效考核数据是通过员工这个资源关联在一起来的,而且绩效数据直接关系到工资的多少。采购订单数据与生产订单数据之间通过物料的追溯机制进行关联,而生产订单又是由员工完成的,即通过员工作业数据与员工信息数据关联起来。

其实,我们本书探讨的企业大数据,每个数据集都是相关关联的,有些是直接关联的,比如员工工资数据和员工绩效数据,有些是间接关联的,比如说物料采购订单数据与员工工资数据。这些数据的关联关系是由公司的资源,包括人、财、物和信息等,连接起来的。如果有任何的数据集不能连接到其他的数据集,就会存在数据割裂或者数据孤岛。数据割裂和数据孤岛是企业数据关联性不足导致的。而数据的关联性直接影响到企业数据集的价值。

I. 什么是数据的维数

数据的维数一般是指数据不相干的几种特性,如对温度采集得到的一串数据序列,每一个数字代表着两个个属性,时间,温度大小。对于不同的研究对象,所得到的数据维数不同,因为他们的属性不同。

J. 大数据的考察维度有哪些

第一、描述思维
也就是要将一些的结构化的数据或者非结构化的数据都变为客观的标准,在大数据思维的过程中,涉及了很多人为的因素,这些也是可以进行数据分析的,举一个例子就是消费者行为的研究,消费者行为可以是定量的,也可以是不定量的,描述思维就要包含消费者行为的各个方面。这里举一个例子就是商场会对连入局域网的客户继续进行数据的采集,了解客户的消费情况以及分布的情况,消费者可以实现购物、用餐、休闲、娱乐一条龙的服务,并且也可以在很大的程度上提升用户的体验度。在一些大型的景区或者游乐场,大数据可以帮助景区进行更好的游客管理。
第二、相关性思维
就是对于数据之间相关性的研究,对于消费者行为或者用户行为的研究方面,这些行为在一定程度上,大大小小和其他不同的数据都是有内在的联系的,大数据分析的结果就可以更好的建立起数据预测的模型,可以用来预测消费者的偏好和行为,相关性的研究和纷纷也可以更好的支持预测思维,例如在现代物流行业,可以根据消费者的购买行为或者购买习惯,路线以及评价等预测下次的购买行为,现将一些货物进行分仓的存储,在消费者网络下订单之后,可以第一时间就配送到位,大大提升了用户的体验度。以及电商的一个重要的商品推荐功能,也是和大数据的相关性思维密不可分,我们在浏览页面或者是购物完成之后经常会受到类似的推荐功能,虽然说并不是百分之百都会购买,但是推荐还是有效果的。
第三、攻略思维
在大数据继续预测以及分析之后,企业可以根据大数据分析的结果进行营销策略的调整,这才是大数据营销的主要目的,从描述到预测,最后到攻略,这也是大数据思维的一个完整的过程。

与数据有多少个维度相关的资料

热点内容
神奇宝典信息费一个月多少钱 浏览:242
双向交易软件哪个好 浏览:314
杨老师营销在做推广时如何做产品 浏览:491
红酒代理做的酒标怎么弄下来 浏览:277
餐饮公司代理怎么办理 浏览:747
自动施工技术SAM是什么技术 浏览:355
58同城招聘信息怎么登录 浏览:895
世界交易大赛是什么 浏览:210
交易猫代充折扣多少钱 浏览:218
大数据基因排序实际应用于哪些 浏览:960
技术工作经历怎么填 浏览:628
中铝环保生态技术有限公司怎么样 浏览:11
怎么让导出的数据不出现e 浏览:68
什么版本能收到你的信息 浏览:866
什么是碳转移碳交易 浏览:310
今日衡水市场西红柿价钱多少 浏览:532
帮人加工产品怎么入账 浏览:63
产品责任险怎么投保 浏览:577
代理记账怎么样 浏览:87
用什么地方可以查到房产信息 浏览:377