导航:首页 > 数据处理 > 数据融合算法有哪些

数据融合算法有哪些

发布时间:2022-02-12 04:43:06

① 多传感器信息融合有哪些常用的融合算法

传感器(英文名称:transcer/sensor)是一种检测装置,能感受到被测量的信息,并能将感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。
传感器的特点包括:微型化、数字化、智能化、多功能化、系统化、网络化。它是实现自动检测和自动控制的首要环节。传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。通常根据其基本感知功能分为热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏感元件、色敏元件和味敏元件等十大类。

② 信息融合结构和常用基本方法有哪些

从几何角度,结构通常可以分三类:1、杆件结构:通常由若干根杆件互相联结组成.杆件的几何特征是其长度远大于横截面上两个方向的尺度.2、板壳结构:厚度远小于其长度和宽度.外形为平面称为薄板,外形为曲面则称为薄壳.

③ D-S证据理论数据融合 具体算法

m (O)=(m1 (O)×m2 (O)+m1 (O)×m2 (Θ)+m2(O)×m1 (Θ))=0.3464
m(Θ)= m1(Θ) × m2(Θ)=0.6536
难道标准答案有误?

④ 信息融合的方法

利用多个传感器所获取的关于对象和环境全面、完整信息,主要体现在融合算法上。因此,多传感器系统的核心问题是选择合适的融合算法。对于多传感器系统来说,信息具有多样性和复杂性,因此,对信息融合方法的基本要求是具有鲁棒性和并行处理能力。此外,还有方法的运算速度和精度;与前续预处理系统和后续信息识别系统的接口性能;与不同技术和方法的协调能力;对信息样本的要求等。一般情况下,基于非线性的数学方法,如果它具有容错性、自适应性、联想记忆和并行处理能力,则都可以用来作为融合方法。多传感器数据融合虽然未形成完整的理论体系和有效的融合算法,但在不少应用领域根据各自的具体应用背景,已经提出了许多成熟并且有效的融合方法。

⑤ wsn数据融合的主要方法有哪些

传器(英文名称:transcer/sensor)种检测装置能受测量信息并能受信息按定规律变换电信号或其所需形式信息输满足信息传输、处理、存储、显示、记录控制等要求
传器特点包括:微型化、数字化、智能化、功能化、系统化、网络化实现自检测自控制首要环节传器存发展让物体触觉、味觉嗅觉等官让物体慢慢变起通根据其基本知功能热敏元件、光敏元件、气敏元件、力敏元件、磁敏元件、湿敏元件、声敏元件、放射线敏元件、色敏元件味敏元件等十类

⑥ 请问 信息融合的算法有哪几种包括同源和异源的。万分感谢!

对不起,不是很清楚

⑦ 设计一种图像数据融合算法,对多聚焦图像进行融合

融合算法fusion
algorithm
如:(多传感器单目标位置融合算法)
经纬仪引导数据的数据融合可以采用参数估计融合算法,即对8组引导数据,按照某种估计准则函数
融合算法fusion
algorithm
如:(多传感器单目标位置融合算法)
经纬仪引导数据的数据融合可以采用参数估计融合算法,即对8组引导数据,按照某种估计准则函数

⑧ 多源异构数据融合技术要用到什么算法

经纬仪引导数据的数据融合可以采用参数估计融合算法,即对8组引导数据,按照某种估计准则函数,利用引导数据序列对目标在空间的位置值作出估计,得到目标准确的位置值,消除引导过程中的不确定性。 为准确估计目标的位置值(以Y为例),对8组引导数据进行线性观测,得到的引导值为Cj,Y,j=1,2,3,…,n,其中:Cj为常值。 由于观测有误差,实际所得的引导值为:Ej=CjY十cj,其中ej为观测误差,服从均值为0的正态分布。 依据Bayes后验估计理论,可得到n个引导数据的状态最优估计为: ^Yop,(E1E2E3...En)=maxP(Y│E1E2E3...En) (1) Y^ 即位置的数据融合问题,可以转化为求出满足Y的最大后验概率maxP(Y│E)的估计值Y(E)的问题。在经纬仪实时测量中,对多路引导源的异构引导数据,采用分布图法进行数据合理性检测,采用参数估计的逻辑规则进行数据融合,消除各引导数据的不确定性,可以获得更准确、更可靠的引导数据,从而提高整个测量系统的工作性能。即使某一个甚至几个引导源工作同时不正常时,其他引导源不受影响独立地提供信息,指挥中心仍可依据非失效的引导数据获知目标的准确位置,将失效的经纬仪很快的引导到目标观测点,降低了整个测量系统的脆弱程度。

⑨ GIS不同格式数据之间的融合有哪些方法

从表现形式上,地学数据可分为以下几类:①地质、物探、化探等测量数据;②地形图、地质图、遥感图等图形、图像数据;③各种经验性、描述性数据。鉴于目前的研究现状,我们认为地学数据融
合的关键问题如下:①空间遥感数据与地面测量数据的融合;②各地面测量数据之间的融合;③不同空间测量手段获取的数据间的融合;④定量数据与经验性、知识性数据的融合

①一般的地学数据整合模式是:
1、数据包括传感器收集数据的直接数据和专家经验知识和描述性文字等间接数据;
2、首先是初级滤波,主要是对各种数据源的、有不同量级、不同量纲、不同表现形式的数据作第一次规整;
3、然后是一级处理是对各种数据集的操作,包括校对、识别、相关分析、数据或变量的综合等,形成的结果有的可直接进入到数据管理系统供用户使用,有的进入到二级处理;
4、二级处理是对目标的评估,即根据前面的操作,协同利用各数据源对目标进行识别和评估,并尽可能给出评估的精度,最后将结果送至数据管理系统。
5、最后利用GIS的空间数据管理能力,将结果转换为空间图层的方式,可极大地方便用户的使用和对空间分析功能的支持。

②遥感图像处理中的数据融合
1、“融合”这一术语在遥感图像的处理中已不是新名词了。它主要是对不同传感器、不同波段、不
同时相的影像进行融合处理,处理的目的多是为提高图像光谱分辨率和空间分辨率。
2、应用图像处理方法时,首先对原始图像进行严格的配准是非常必要的。目前基于图像处理的数据融合主要有以下3个方面:①基于像元的融合(来自两个不同特性的影像的加权融合);②基于特征的融合(是在①的基础上加入特征的提取与分离);③基于判决水平的融合(高层次的决策融合,通常是面向特定应用的融合)。

③VGE中的数据融合
1、VGE即虚拟地理环境,它是一种综合应用各种技术制造逼真的人工模拟环境,并能有效地模拟人在自然环境中的各种感知系统行为的高级的人机交互技术。为了达到对现实世界的真实模拟必然需要用到大量的地理数据,其中3维数据的应用尤为重要!
2、由于获取的数据,包含有不同的领域,不同的格式,所以需要设计统一的数据接口,这个可以通过FME实现。
3、由于部分领域数据可能不具有明确的地理坐标,所以还需要根据其地理参考信息做出一系列的配准,投影转换等操作。
4、建立统一的空间数据库,对数据加以统一组织,存储与管理。
5、最后就是多源数据的可视化与交互,这个涉及到具体的计算机技术就不做展开了。

以上回答为个人总结,希望对你有帮助~

阅读全文

与数据融合算法有哪些相关的资料

热点内容
为什么不卖代购产品 浏览:64
王者怎么让自己的技术变得厉害 浏览:579
微信小程序如何添加呱呱赞插件 浏览:624
刷机如何保存所有数据 浏览:254
扫描识别信息有哪些 浏览:46
程序员到底学习什么 浏览:801
信息起源是哪个词 浏览:174
很多种类产品如何开票 浏览:154
上市的市场研究咨询公司哪些 浏览:500
怎么做有温度感的产品 浏览:446
如何提高火车牵引技术 浏览:726
在网上买电子产品怎么找 浏览:589
oppo怎么申请代理 浏览:364
如何提取全部股票的数据 浏览:596
如何快速导出新产品 浏览:878
西部数据的固态硬盘好在哪里 浏览:920
信用卡都取消了为什么还能交易 浏览:645
数据结构执行文件时出错怎么办 浏览:200
自学点什么技术最好 浏览:544
如何注销保险代理人展业证 浏览:736