① 请问有免费的大数据分析平台吗
② 目前国内有哪些好用的大数据分析平台
大数据分析平台有思迈特软件Smartbi:思迈特软件Smartbi是企业级商业智能和大数据分析品牌,经过多年持续自主研发,凝聚大量商业智能最佳实践经验,整合了各行业的数据分析和决策支持的功能需求。满足最终用户在企业级报表、数据可视化分析、自助探索分析、数据挖掘建模、AI智能分析等大数据分析需求。③ 大数据平台的软件有哪些
一、Phoenix
这是一个Java中间层,可以让开发者在Apache HBase上执行SQL查询。Phoenix完全使用Java编写,代码位于GitHub上,并且提供了一个客户端可嵌入的JDBC驱动。
Phoenix查询引擎会将SQL查询转换为一个或多个HBase scan,并编排执行以生成标准的JDBC结果集。直接使用HBase API、协同处理器与自定义过滤器,对于简单查询来说,其性能量级是毫秒,对于百万级别的行数来说,其性能量级是秒。
二、Presto
Facebook开源的数据查询引擎Presto ,可对250PB以上的数据进行快速地交互式分析。该项目始于 2012 年秋季开始开发,目前该项目已经在超过 1000 名 Facebook 雇员中使用,运行超过 30000 个查询,每日数据在 1PB 级别。Facebook 称 Presto 的性能比诸如 Hive 和 Map*Rece 要好上 10 倍有多。
Presto 当前支持 ANSI SQL 的大多数特效,包括联合查询、左右联接、子查询以及一些聚合和计算函数;支持近似截然不同的计数(DISTINCT COUNT)等。
三、Shark
Shark即Hive on Spark,本质上是通过Hive的HQL解析,把HQL翻译成Spark上的RDD操作,然后通过Hive的metadata获取数据库里的表信息,实际HDFS上的数据和文件,会由Shark获取并放到Spark上运算。Shark的特点就是快,完全兼容Hive,且可以在shell模式下使用rdd2sql()这样的API,把HQL得到的结果集,继续在scala环境下运算,支持自己编写简单的机器学习或简单分析处理函数,对HQL结果进一步分析计算。
关于大数据平台的软件有哪些,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
以上是小编为大家分享的关于大数据平台的软件有哪些?的相关内容,更多信息可以关注环球青藤分享更多干货
④ 有没有可以免费试用的大数据分析平台
可以免费使用的大数据分析平台有:思迈特软件Smartbi。作为成熟的大数据分析平台,具备可复用、 动静结合独特的展示效果,而且让数据可视化灵活强大,动静皆宜,也为广大用户提供了无限的应用能力和想象的空间。⑤ 大数据平台的软件有哪些
一、Phoenix
简介:这是一个Java中间层,可以让开发者在Apache HBase上执行SQL查询。Phoenix完全使用Java编写,代码位于GitHub上,并且提供了一个客户端可嵌入的JDBC驱动。
Phoenix查询引擎会将SQL查询转换为一个或多个HBase scan,并编排执行以生成标准的JDBC结果集。直接使用HBase API、协同处理器与自定义过滤器,对于简单查询来说,其性能量级是毫秒,对于百万级别的行数来说,其性能量级是秒
二、Stinger
简介:原叫Tez,下一代Hive,Hortonworks主导开发,运行在YARN上的DAG计算框架。
某些测试下,Stinger能提升10倍左右的性能,同时会让Hive支持更多的SQL,其主要优点包括:
❶让用户在Hadoop获得更多的查询匹配。其中包括类似OVER的字句分析功能,支持WHERE查询,让Hive的样式系统更符合SQL模型。
❷优化了Hive请求执行计划,优化后请求时间减少90%。改动了Hive执行引擎,增加单Hive任务的被秒处理记录数。
❸在Hive社区中引入了新的列式文件格式(如ORC文件),提供一种更现代、高效和高性能的方式来储存Hive数据。
三、Presto
简介:Facebook开源的数据查询引擎Presto ,可对250PB以上的数据进行快速地交互式分析。该项目始于 2012 年秋季开始开发,目前该项目已经在超过 1000 名 Facebook 雇员中使用,运行超过 30000 个查询,每日数据在 1PB 级别。Facebook 称 Presto 的性能比诸如 Hive 和 Map*Rece 要好上 10 倍有多。
Presto 当前支持 ANSI SQL 的大多数特效,包括联合查询、左右联接、子查询以及一些聚合和计算函数;支持近似截然不同的计数(DISTINCT COUNT)等。
⑥ 大数据分析平台有哪些
1、国家数据: http://data.stats.gov.cn可以查询到国家统计局调查统计的各专业领域的主要指标时间序列数据。
2、阿里指数: https://index.1688.com最权威专业的行业价格、供应、采购趋势分析。
3、微指数: https://data.weibo.com/index微指数是对提及量、阅读量、互动量加权得出的综合指数,更加全面的体现关键词在微博上的热度情况。
4、微信指数: 微信里面搜一搜“微信指数”就能直接找到。立足于微信生态,依托海量用户数据,微信指数具有天生优势。
5、淘宝生意参谋: https://sycm.taobao.com生意参谋基于“支付金额=访客数*转化率*客单价”这一公式,帮你快速定位生意波动的核心因素。
6、搜狗指数: http://shu.sogou.com/全网热门事件、品牌、人物等查询词的搜索热度变化趋势,掌握网民需求变化.
7、头条指数: https://index.toutiao.com/头条指数是巨量引擎云图推出的一种数据产品。
8、360指数: http://index.haosou.com360趋势是以360产品海量用户数据为基础的大数据展示平台。
⑦ 国内大数据平台有哪些可以免费试用的,或者免费测试一段时间的,不必是非常知名的平台
没有免费的午餐……你就继续使用他家的平台吧,虽然不知名,平台好用收费低就行了
⑧ 常用的大数据分析平台有哪些
国家数据: http://data.stats.gov.cn可以查询到国家统计局调查统计的各专业领域的主要指标时间序列数据。阿里指数: https://index.1688.com最权威专业的行业价格、供应、采购趋势分析。
微指数: https://data.weibo.com/index微指数是对提及量、阅读量、互动量加权得出的综合指数,更加全面的体现关键词在微博上的热度情况。
微信指数: 微信里面搜一搜“微信指数”就能直接找到。立足于微信生态,依托海量用户数据,微信指数具有天生优势。
淘宝生意参谋: https://sycm.taobao.com生意参谋基于“支付金额=访客数*转化率*客单价”这一公式,帮你快速定位生意波动的核心因素。
搜狗指数: http://shu.sogou.com/全网热门事件、品牌、人物等查询词的搜索热度变化趋势,掌握网民需求变化.
头条指数: https://index.toutiao.com/头条指数是巨量引擎云图推出的一种数据产品。
360指数: http://index.haosou.com360趋势是以360产品海量用户数据为基础的大数据展示平台。
飞瓜数据: https://www.feigua.cn/飞瓜数据是短视频领域权威的数据分析平台,提供抖音数据和快手数据等。
七麦数据: https://www.qimai.cn/七麦数据是国内专业的移动应用APP数据分析平台。
网络指数: http://index..com你可以研究关键词搜索趋势、洞察网民兴趣和需求、监测舆情动向、定位受众特征。
京东商智: https://sz.jd.com丰富的运营数据,覆盖电商全域,提升运营效率。多维度行业竞争数据,刻画行业趋势,洞察消费特性,辅助运营决策。
⑨ 大数据技术平台有哪些
Java:只要了解一些基础即可,做大数据不需要很深的Java 技术,学java SE 就相当于有学习大数据。基础
Linux:因为大数据相关软件都是在Linux上运行的,所以Linux要学习的扎实一些,学好Linux对你快速掌握大数据相关技术会有很大的帮助,能让你更好的理解hadoop、hive、hbase、spark等大数据软件的运行环境和网络环境配置,能少踩很多坑,学会shell就能看懂脚本这样能更容易理解和配置大数据集群。还能让你对以后新出的大数据技术学习起来更快。
好说完基础了,再说说还需要学习哪些大数据技术,可以按我写的顺序学下去。
Oozie:既然学会Hive了,我相信你一定需要这个东西,它可以帮你管理你的Hive或者MapRece、Spark脚本,还能检查你的程序是否执行正确,出错了给你发报警并能帮你重试程序,最重要的是还能帮你配置任务的依赖关系。我相信你一定会喜欢上它的,不然你看着那一大堆脚本,和密密麻麻的crond是不是有种想屎的感觉。
Hbase:这是Hadoop生态体系中的NOSQL数据库,他的数据是按照key和value的形式存储的并且key是唯一的,所以它能用来做数据的排重,它与MYSQL相比能存储的数据量大很多。所以他常被用于大数据处理完成之后的存储目的地。
Kafka:这是个比较好用的队列工具,队列是干吗的?排队买票你知道不?数据多了同样也需要排队处理,这样与你协作的其它同学不会叫起来,你干吗给我这么多的数据(比如好几百G的文件)我怎么处理得过来,你别怪他因为他不是搞大数据的,你可以跟他讲我把数据放在队列里你使用的时候一个个拿,这样他就不在抱怨了马上灰溜溜的去优化他的程序去了,因为处理不过来就是他的事情。而不是你给的问题。当然我们也可以利用这个工具来做线上实时数据的入库或入HDFS,这时你可以与一个叫Flume的工具配合使用,它是专门用来提供对数据进行简单处理,并写到各种数据接收方(比如Kafka)的。
Spark:它是用来弥补基于MapRece处理数据速度上的缺点,它的特点是把数据装载到内存中计算而不是去读慢的要死进化还特别慢的硬盘。特别适合做迭代运算,所以算法流们特别稀饭它。它是用scala编写的。Java语言或者Scala都可以操作它,因为它们都是用JVM的。
⑩ 大数据有哪些常用的平台
大数据有三个主要部分,分别是数学,统计学和计算机等学科。大数据基础知识往往决定了开发人员未来的成长高度,所以要重视基础知识的学习。
大数据平台是对海量结构化、非结构化、半机构化数据进行采集、存储、计算、统计、分析处理的一系列技术平台。大数据平台处理的数据量通常是TB级,甚至是PB或EB级的数据,这是传统数据仓库工具无法处理完成的,其涉及的技术有分布式计算、高并发处理、高可用处理、集群、实时性计算等,汇集了当前IT领域热门流行的各类技术。
(10)免费大数据平台有哪些扩展阅读:
注意事项:
大数据的第一站就是收集和存储海量数据(公开/隐私)。现在每个人都是一个巨大的数据源,通过智能手机和个人笔记本释放出大量的个人行为信息。获取数据似乎已经变得越来越容易,数据收集这一模块最大的挑战在于获取海量数据的高速要求以及数据的全面性考虑。
传统商业智能在数据清洗处理的做法(ETL)是,把准确的数据放入定义好的格式中,通过基础的抽取统计生成高维度的数据,方便直接使用。然而大数据有个最突出的特征——数据非结构化或者半结构化。因为数据有可能是图片,二进制等等。数据清洗的最大挑战来了——如何转化处理大量非结构数据,便于分布式地计算分析。