A. 数据分析去哪里学
随着互联网行业的快速发展,数据分析培训已成了IT培训行业热门培训。据数据得知,企业对大数据人才的需求在逐渐增长,对于那些想要入行大数据而没有经验的人来说,参加数据分析培训无疑是一个不错的选择。
1、数据分析培训机构的学习氛围好。
身边有不少朋友选择自学数据分析,但自身约束能力和竞争意思较差,三天打鱼两天晒网成了常态,而培训机构的学习氛围就不一样了,二三十人聚集到一个教室里,大家都为了日后找到体面的工作而努力,肯定不会像以前一样报天打游戏。
2、数据分析培训机构有专业的导师辅导。
如果自学数据分析的话,遇到一个难懂的技术问题,憋了一脑门子汗好不容易找到了答案,结果不知道是什么意思,而在培训机构学习就不同了,虽然在培训机构花了高价格学费,但最大的好处就是有专业的导师指点、从入门到熟练掌握、详细讲解项目经验等,这确实可以加快学习,也能够深入理解学习重点。
3、数据分析培训机构有实训项目。
很多学员都一致认为,去培训机构学习最大的好处就是有名企的导师为自己制定实训项目,指点作品中的不足,最终形成一份好,而好的作品对提升面试概率有很大的帮助,日后也更容易胜任企业真实的项目开发工作。
4、通过数据分析培训机构有进入名企的机会。
不少学员表示从学校毕业后进入名企的概率很低,主要是因为自己对技术知识掌握不全面,项目实训时间短,进入企业不能够胜任项目开发,而培训机构是通向名企的便捷途径。
数据分析培训机构里资源、经验、案例、严师对提升个人能力有很大的帮助,如果不想浪费自己的青春年华,然而CDA认证机构是一个不错的选择,CDA(Certified Data Analyst),是大数据和人工智能时代面向国际范围全行业的数据分析专业人才职业简称,具体指在互联网、金融、咨询、电信、零售、医疗、旅游等行业专门从事数据的采集、清洗、处理、分析并能制作业务报告、提供决策的新型数据人才。
B. 去哪学数据分析比较好
数据分析你可以自己买相关书籍自学,因为只要简单的数据分析没必要特意找机构学。比如买Excel或者SPSS的讲得略深一些的书,Excel书得有数据透视表相关内容。如果想加一门语言学得更深一些可以买本R语言的书,数据分析或数据挖掘常用R做。
C. 大数据分析去哪里学
最着名的大学南京邮电大学已经开设了大数据分析课程
D. 如何学习数据分析
对于自学数据分析,很多零基础的小伙伴都有以下的疑问。
“我数学不好身,可以学习数据分析吗?”
“我英语不好,可以成为数据分析师吗?”
“我没有编程基础可以学习数据分析吗?”
......
其实学习数据分析要比想象中容易得多,通常一提到数据分析就会想到各种数据和编程,让人头大,让很多零基础的小伙伴不知道如何下手学习。但是在IT行业中,数据分析往往是最容易入门和学习的,薪资也是比较高的,很多零基础的小伙伴被数据分析吓到劝退往往是不知道怎么样高效学习,没有找到适合自己的方法。想要了解更多,点击下方链接就能找到我。
接下来就讲讲如何自学数据分析,学习步骤如下
自学数据分析推荐书籍
数据分析常用的工具
数据分析常见面试问题
一些小建议
1.自学数据分析推荐书籍
入门篇
对于刚走上数据分析这条路的小白们,面对每天的工作可能已经手忙脚乱,但工作后面的逻辑及工具的应用,真的已经了解了吗?
从事数据分析的小白们,很多都和一样是半路出家,甚至有些文科的小伙伴,也对数据分析非常感兴趣。但是喜欢归喜欢,基础的知识还是得必备。
1. 《深入浅出数据分析》
这本书可以说是很多数据分析师的启蒙书籍。
怎么提升销量、怎么分析a门店比b门店好、怎么进行细分分析和对比分析......在读完这本书之后,跟着Acme在重重挑战之下,对数据分析有了一个整体认识。
2. 《深入浅出统计学》
什么是统计?什么是众数、异常值、四分位数?几何分布,泊松分布,二项分布又是什么?如何对数据进行预测?预测数据和置信区间又有什么关系?
这些名词是不是很可怕?没事,这本书写得非常浅显易懂,很多图片和对话,像看漫画书一样,把统计学学了。
3. 《谁说菜鸟不会数据分析》
牛老板和应届生小白之间的职场小故事,像看一本小说一样,但是其中会告诉你什么是数据分析,处理数据的技巧,提升图表之美,如何建立结构化思维等等。和第一本书类似,看书也是多多益善嘛~
4. 《漫画统计学》
这本书真的是以漫画的形式来讲统计学了,在诙谐的人物肢体和幽默的对话之间,传达统计知识,让无聊的数字变得生动有趣。
这本书可以在闲暇又不想学习的时候来打发时间呀,既学到了知识,又没那么累。
进阶篇
想必这段时间,小白们也有了一定的工作经验,对于数据分析有了稍微具体的认识。这时的目标是学习更加系统的数据思维。
5. 《商务与经济统计》
戴维 R.安德森的这本书,把数据处理、数据分析、业务三者相结合,还有不少统计学的知识。
记得以前看这本书的时候,拿着赠送的数据一边模拟操作,一边学习。在实践中对处理方法更加熟练,也对业务当中的数据分析有了更加立体的认识。
6. 《机器学习》
周志华先生写的这本《机器学习》,俗称西瓜书,是用西瓜的例子来引导一个又一个算法的介绍及应用。
跟着这本书,倒是学会了用Python编了个聚类算法,哈哈。不过这本书比较难,没有一定的统计基础和编程基础,还是就了解了解吧。想要学习更多数据分析知识,点击下方链接找到我。
2.数据分析常用的工具
(一)、常见数据分析工具
①、EXCEL
EXCEL可以说是数据分析师最常用的统计分析工具,它
使用广泛,容易上手,小规模数据的处理成本低,样式处理方便。
应该说只有学会了Vlookup,数据透视和基本公式才算EXCEL入门。
②、SQL
作为数据分析人员,要想获取数据,肯定就要和数据库打交道,因此sql肯定是要掌握的,在招聘要求中,sql也是很多数据分析岗位的能力要求之一。
SQL具有行业通用的优势,它的语法简单,独立于数据库本身。
③、Python
Python作为目前最火的编程软件之一,确实在数据分析、数据挖掘上有着独特优势。它主要用于做一些像数据挖掘的项目,或者说一些数据可视化等等。
④、PPT
那么最后,数据呈现,分析报告主要就是由PPT来实现,它是将分析关键结果传递给其他的重要手段。
学好PPT可以提升沟通和消息传递效率,也是数据分析师必备的技能。
E. 学历低,想学习数据分析,去哪学比较好
照我多年的观察,学习大数据的人群学历最低基本上是在大专,一般都是本科或硕士生居多,不过这不是绝对的,毕竟大数据相关职位对行业知识和项目经验也很看重,如果家庭经济情况允许,自己学习意愿也比较强的,在校生可以选择读研,已经本科毕业出来的学生,可以选择报一个大数据就业班之类的,系统地提高一下自己的业务能力和实操经验。
对于学历这个问题,一般来说,当你没有任何基础的时候,能拿得出手的只有学历,本科生当然竞争不过研究生。但是随着工作时间久了,你的能力达到了这个职位的要求,学历就不重要了。尤其是对业务能力要求比较高的数据分析师、数据挖掘师这些职位,你的行业知识和业务理解能力在很多情况下比学历更加重要。
至于去哪里学,这个你可以货比三家,结合自己的专业背景和兴趣偏好,选择你更加喜欢或更加信任的课程,虽然课程整体上都是大同小异,但讲师的授课方式和个人水平很重要,一定要找好符合自己心态和感官的讲师,这样你学起来会更加得心应手。我们CDA也有大数据分析就业班,有时间可以了解一下,让课程顾问帮你好好分析分析你目前所处的水平在什么位置,然后再量身为你推荐适合你学习的课程。
为让更多有志人士实现AI梦,进入人工智能行业,CDA数据分析师为小伙伴们量身打造了《CDA人工智能就业班》。课程采用“case by case”的方式,通过实际案例手把手将人工智能技术传授给学员。
不仅如此,我们还为《CDA人工智能就业班》成功毕业的学员,开通了就业直通车,为其推荐相关工作单位。
同时,报名参加CDA数据分析师培训课程的学员或企业,还可申请政府补贴,每人每年合计最高可达1万元,具体的补贴标准请详细咨询哦!
F. 学习数据分析有什么值得推荐的网站
纵观互联网,哪个不是靠数据分析来调整自身的产品,所以我们的网站也要开始进入数据分析时代,及时发现网站自身问题,而后针对性的解决问题,而不是盲目的靠猜,下面太原seo学习网就给大家上干货——8分钟轻松搞定网站数据分析!
1、要学会及时发现蛛丝马迹
很多时候,我们搞seo的不是等问题出来了,问题放大了才去解决,而是要在平时的点点滴滴中通过我们的经验去发现小问题。带着这些问题我们进行网站数据分析会让问题变得简单直接。
2、网站数据分析要经常关注pv、uv、ip、跳出率
从网络统计工具的后台就可以很清楚的看到我们网站的pv、uv、ip、跳出率,为什么网络会把这几个数据放在后台最显眼的位置呢?聪明的seo已经猜到了,网络现在对于网站的整体权重判断依据之一就是来源于这几个重要数据。
3、网站来源分析、地域分布是法宝
一般情况下我们网站的外链做的不一定是越多越好,而是质量越高越好,那么这个质量从哪里能看出来呢?从网络统计的来源分析中就可以看到我们网站的哪些外链是流量最大的入口,分析过后就可以针对性的将流量大的入口进行调整发布量,而流量小的入口就可以放弃了,毕竟我们人少不够,精力有限嘛!
4、必须分析的受访页面、着陆页和搜索词
这三个数据应该说是整个网站数据分析中的压轴大戏了,因为我们要进行准确的站内布局以及页面调整都得靠这三个数据。
分析受访页面可以分析出我们网站哪些页面最受用户喜欢,能看出推广、外链以及内链效果做的怎么样,分析搜索词可以得出现在用户喜欢从哪些词进入我们的网站。
着陆页数据分析可以体现出网站外链、推广链接以及网站现在排名的效果,如果网站没有关键词排名,可以以此来推测我们的推广、外链的效果做的怎么样。
我们还可以通过搜索词分析哪些关键词给我们带来了流量,以及访问的页面是哪些,访问页的跳出率是多少,是不是应该推广这个页面帮助它提升排名。
5、分析页面点击图和页面上下游
页面点击图相信大家都设置过吧,但是真正的用途是什么呢?绝对不是让你看看自己是不是色盲这么简单。利用页面点击图可以调整网站首页布局,颜色越红的内容应该放置最容易被用户看到的位置,颜色浅的内容就应该往下面放。而点击很少或者没有点击的内容可以从首页移除。
页面上下游主要是用来分析用户浏览网页的轨迹,我们大概从上下游的数据可以发现用户点击最多的文章是哪一篇,以及哪些页面的跳出率高。
G. 如何学习数据分析
首先我说说这两种方向共同需要的技术面,当然以下只是按照数据分析入门的标准来写:
1. SQL(数据库),我们都知道数据分析师每天都会处理海量的数据,这些数据来源于数据库,那么怎么从数据库取数据?如何建立两表、三表之间的关系?怎么取到自己想要的特定的数据?等等这些数据选择问题就是你首要考虑的问题,而这些问题都是通过SQL解决的,所以SQL是数据分析的最基础的技能,零基础学习SQL可以阅读这里:SQL教程_w3cschool
2. 统计学基础,数据分析的前提要对数据有感知,数据如何收集?数据整体分布是怎样的?如果有时间维度的话随着时间的变化是怎样的?数据的平均值是什么?数据的最大值最小值指什么?数据相关与回归、时间序列分析和预测等等,这些在网易公开课上倒是有不错的教程:哈里斯堡社区大学公开课:统计学入门_全24集_网易公开课
3.Python或者R的基础,这一点是必备项也是加分项,在数据挖掘方向是必备项,语言相比较工具更加灵活也更加实用。至于学习资料:R语言我不太清楚,Python方向可以在廖雪峰廖老师的博客里看Python教程,面向零基础。
再说说两者有区别的技能树:
1.数据挖掘向
我先打个前哨,想要在一两个月内快速成为数据挖掘向的数据分析师基本不可能,做数据挖掘必须要底子深基础牢,编程语言基础、算法、数据结构、统计学知识样样不能少,而这些不是你自习一两个月就能完全掌握的。
所以想做数据挖掘方向的,一定要花时间把软件工程专业学习的计算机基础课程看完,这些课程包括:数据结构、算法,可以在这里一探究竟:如何学习数据结构?
在此之后你可以动手用Python去尝试实现数据挖掘的十八大算法:数据挖掘18大算法实现以及其他相关经典DM算法
2.产品经理向
产品经理向需要你对业务感知能力强,对数据十分敏感,掌握常用的一些业务分析模型套路,企业经常招聘的岗位是:商业分析、数据运营、用户研究、策略分析等等。这方面的学习书籍就很多,看得越多掌握的方法越多,我说几本我看过的或者很多人推荐的书籍:《增长黑客》、《网站分析实战》、《精益数据分析》、《深入浅出数据分析》、《啤酒与尿布》、《数据之魅》、《Storytelling with Data》
H. 哪里可以学习数据分析
大数据分析师有两种岗位定位:
大数据科学家,Data Scientist,DS
大数据工程师,Data Engineer,DE
DS的职能是算法分析,是基于对行业背景的了解帮助客户作出预期计算。而这里面就会涉及到很多专业知识,俗称统计分析。我这里可以学习数据分析。
I. 数据分析师需要学习哪里内容
1、数学知识
数学知识是数据分析师的基础知识。对于初级数据分析师,了解一些描述统计相关的基础内容,有一定的公式计算能力即可,了解常用统计模型算法则是加分。
对于高级数据分析师,统计模型相关知识是必备能力,线性代数(主要是矩阵计算相关知识)最好也有一定的了解。
而对于数据挖掘工程师,除了统计学以外,各类算法也需要熟练使用,对数学的要求是最高的。
所以数据分析并非一定要数学能力非常好才能学习,只要看你想往哪个方向发展,数据分析也有偏“文”的一面,特别是女孩子,可以往文档写作这一方向发展。
2、分析工具
对于初级数据分析师,玩转Excel是必须的,数据透视表和公式使用必须熟练,VBA是加分。另外,还要学会一个统计分析工具,SPSS作为入门是比较好的。
对于高级数据分析师,使用分析工具是核心能力,VBA基本必备,SPSS/SAS/R至少要熟练使用其中之一,其他分析工具(如Matlab)视情况而定。
对于数据挖掘工程师……嗯,会用用Excel就行了,主要工作要靠写代码来解决呢。
3、编程语言
对于初级数据分析师,会写SQL查询,有需要的话写写Hadoop和Hive查询,基本就OK了。
对于高级数据分析师,除了SQL以外,学习Python是很有必要的,用来获取和处理数据都是事半功倍。当然其他编程语言也是可以的。
对于数据挖掘工程师,Hadoop得熟悉,Python/Java/C++至少得熟悉一门,Shell得会用……总之编程语言绝对是数据挖掘工程师的最核心能力了。
4、业务理解
业务理解说是数据分析师所有工作的基础也不为过,数据的获取方案、指标的选取、乃至最终结论的洞察,都依赖于数据分析师对业务本身的理解。
对于初级数据分析师,主要工作是提取数据和做一些简单图表,以及少量的洞察结论,拥有对业务的基本了解就可以。
对于高级数据分析师,需要对业务有较为深入的了解,能够基于数据,提炼出有效观点,对实际业务能有所帮助。
对于数据挖掘工程师,对业务有基本了解就可以,重点还是需要放在发挥自己的技术能力上。
业务能力是优秀数据分析师必备的,如果你之前对某一行业已经非常熟悉,再学习数据分析,是非常正确的做法。刚毕业没有行业经验也可以慢慢培养,无需担心。
4、逻辑思维
这项能力在我之前的文章中提的比较少,这次单独拿出来说一下。
对于初级数据分析师,逻辑思维主要体现在数据分析过程中每一步都有目的性,知道自己需要用什么样的手段,达到什么样的目标。
对于高级数据分析师,逻辑思维主要体现在搭建完整有效的分析框架,了解分析对象之间的关联关系,清楚每一个指标变化的前因后果,会给业务带来的影响。
对于数据挖掘工程师,逻辑思维除了体现在和业务相关的分析工作上,还包括算法逻辑,程序逻辑等,所以对逻辑思维的要求也是最高的。
5、数据可视化
数据可视化说起来很高大上,其实包括的范围很广,做个PPT里边放上数据图表也可以算是数据可视化,所以我认为这是一项普遍需要的能力。
对于初级数据分析师,能用Excel和PPT做出基本的图表和报告,能清楚的展示数据,就达到目标了。
对于高级数据分析师,需要探寻更好的数据可视化方法,使用更有效的数据可视化工具,根据实际需求做出或简单或复杂,但适合受众观看的数据可视化内容。
对于数据挖掘工程师,了解一些数据可视化工具是有必要的,也要根据需求做一些复杂的可视化图表,但通常不需要考虑太多美化的问题。
6、协调沟通
对于初级数据分析师,了解业务、寻找数据、讲解报告,都需要和不同部门的人打交道,因此沟通能力很重要。
对于高级数据分析师,需要开始独立带项目,或者和产品做一些合作,因此除了沟通能力以外,还需要一些项目协调能力。
对于数据挖掘工程师,和人沟通技术方面内容偏多,业务方面相对少一些,对沟通协调的要求也相对低一些。
7、快速学习
无论做数据分析的哪个方向,初级还是高级,都需要有快速学习的能力,学业务逻辑、学行业知识、学技术工具、学分析框架……数据分析领域中有学不完的内容,需要大家有一颗时刻不忘学习的心。
快速学习非常重要,只有快速进入这一行业,才能抢占先机,获得更多的经验和机会。如果你完全零基础想要尽快进入数据分析行业,选择一家专业的大数据培训机构是个不错的选择。缩短学习周期,提高学习效率,时间即金钱!