导航:首页 > 数据处理 > 如何数据清洗

如何数据清洗

发布时间:2022-02-09 03:18:30

数据分析中如何清洗数据

在数据分析中我们重点研究的是数据,但是不是每个数据都是我们需要分析的,这就需要我们去清洗数据,通过清洗数据,这样我们就能够保证数据分析出一个很好的结果,所以说一个干净的数据能够提高数据分析的效率,因此,数据清洗是一个很重要的工作,通过数据的清洗,就能够统一数据的格式,这样才能够减少数据分析中存在的众多问题,从而提高数据的分析的效率。但是清洗数据需要清洗什么数据呢?一般来说,清洗数据的对象就是缺失值、重复值、异常值等。
首先给大家说明一下什么是重复值,所谓重复值,顾名思义,就是重复的数据,数据中存在相同的数据就是重复数据,重复数据一般有两种情况,第一种就是数据值完全相同的多条数据记录。另一种就是数据主体相同但匹配到的唯一属性值不同。这两种情况复合其中的一种就是重复数据。那么怎么去除重复数据呢?一般来说,重复数据的处理方式只有去重和去除两种方式,去重就是第一种情况的解决方法,去除就是第二种情况的解决方法。
其次给大家说一下什么是异常值,这里说的异常值就是指一组测试值中宇平均数的偏差超过了两倍标准差的测定值。而与平均值的偏差超过三倍标准差的测定值则被称为高度异常值。对于异常值来说,我们一般不作处理,当然,这前提条件就是算法对异常值不够敏感。如果算法对异常值敏感了怎么处理异常值呢?那么我们就需要用平均值进行替代,或者视为异常值去处理,这样可以降低数据异常值的出现。
而缺失值也是数据分析需要清理的对象,所谓缺失值就是数据中由于缺少信息导致数据的分组、缺失被称为缺失值,存在缺失值的数据中由于某个或者某些数据不是完整的,对数据分析有一定的影响。所以,我们需要对缺失值进行清理,那么缺失值怎么清理呢?对于样本较大的缺失值,我们可以直接删除,如果样本较小,我们不能够直接删除,因为小的样本可能会影响到最终的分析结果。对于小的样本,我们只能通过估算进行清理。
关于数据分析需要清楚的数据就是这篇文章中介绍的重复值、异常值以及缺失值,这些无用的数据大家在清理数据的时候一定要注意,只有这样才能够做好数据分析。最后提醒大家的是,大家在清理数据之前一定要保存好自己的原始数据,这样我们才能够做好数据的备份。切记切记。

② SPSS怎么清洗数据

需要你自己设定不同的条件 来根据不同的菜单 来进行,没有自动清洗功能

③ 系统数据怎么清理

可以按以下方法清理手机存储空间,让手机随时保持在最佳状态:
1、进入i管家--空间清理/空间管理,清理垃圾缓存;
2、进入文件管理中删除不需要的文件(安装包、视频、压缩包等);
3、删除使用过的软件中的缓存;
4、进入设置--系统管理/更多设置--备份与重置/恢复出厂设置--清除所有数据(此操作前请备份手机中的重要数据)。

④ 怎样清理数据

您好,很高兴为您服务!

清除数据:菜单—设置—清除记录,一般勾选页面缓存和Flash缓存,若是其他请勾选对应选项,然后点击清除。

具体对应内容如下:

输入历史:网址栏中的输入网址历史和搜索历史
搜索历史:搜索栏中的搜索历史
浏览历史:网页浏览历史
页面缓存:页面缓存记录
cookies:身份信息,如账号密码登录状态,以及网页痕迹
首页数据:首页数据,修复首页异常
表单密码:保存登录网站的账号密码
flash缓存:播放flash时的缓存文件

如果仍有问题,请您继续向我们反馈,我们会第一时间为您跟进。

⑤ 数据挖掘中常用的数据清洗方法

数据挖掘中常用的数据清洗方法
对于数据挖掘来说,80%的工作都花在数据准备上面,而数据准备,80%的时间又花在数据清洗上,而数据清洗的工作,80%又花在选择若干种适当高效的方法上。用不同方法清洗的数据,对后续挖掘的分析工作会带来重大影响。

1、数值化
由于原始数据往往存在各种不同格式的数据形式,比如如果你要处理的数据是数值型,但是原始数据也许有字符型或者其他,那就要对其进行标准化操作。处理的方式可以很简单也可以很复杂,我采取过的一个方法是:对字符串取值,按照ANSI码值求和得到字符串的值,如果值太大,可以取一个适当的质数对其求模,本质上就是映射到一个区间了。然后就得到数值型的数据了。
2、标准化 normalization
由于原始数据各个维度之间的数值往往相差很大,比如一个维度的最小值是0.01,另一个维度最小值却是1000,那么也许在数据分析的时候,计算相关性或者方差啥的指标,后者会掩盖了前者的作用。因此有必要对整体数据进行归一化工作,也就是将它们都映射到一个指定的数值区间,这样就不会对后续的数据分析产生重大影响。我采取过的一个做法是:min-max标准化。
3、降维
由于原始数据往往含有很多维度,也就是咱们所说的列数。比如对于银行数据,它往往就含有几十个指标。这些维度之间往往不是独立的,也就是说也许其中之间若干的维度之间存在关联,也许有他就可以没有我,因此咱们可以使用数据的相关性分析来降低数据维度。我使用过的一个方法是:主成分分析法。
4、完整性:
解决思路:数据缺失,那么补上就好了。
补数据有什么方法?
- 通过其他信息补全,例如使用身份证件号码推算性别、籍贯、出生日期、年龄等
- 通过前后数据补全,例如时间序列缺数据了,可以使用前后的均值,缺的多了,可以使用平滑等处理,记得Matlab还是什么工具可以自动补全

- 实在补不全的,虽然很可惜,但也必须要剔除。但是不要删掉,没准以后可以用得上

- 解决数据的唯一性问题
解题思路:去除重复记录,只保留一条。
去重的方法有:
- 按主键去重,用sql或者excel“去除重复记录”即可,
- 按规则去重,编写一系列的规则,对重复情况复杂的数据进行去重。例如不同渠道来的客户数据,可以通过相同的关键信息进行匹配,合并去重。

- 解决数据的权威性问题
解题思路:用最权威的那个渠道的数据
方法:
对不同渠道设定权威级别,例如:在家里,首先得相信媳妇说的。。。

- 解决数据的合法性问题
解题思路:设定判定规则

- 设定强制合法规则,凡是不在此规则范围内的,强制设为最大值,或者判为无效,剔除

- 字段类型合法规则:日期字段格式为“2010-10-10”
- 字段内容合法规则:性别 in (男、女、未知);出生日期<=今天

设定警告规则,凡是不在此规则范围内的,进行警告,然后人工处理

- 警告规则:年龄》110

离群值人工特殊处理,使用分箱、聚类、回归、等方式发现离群值
解决数据的一致性问题

解题思路:建立数据体系,包含但不限于:

- 指标体系(度量)
- 维度(分组、统计口径)
- 单位
- 频度
- 数据

⑥ 数据挖掘中常用的数据清洗方法有哪些

对于数据挖掘来说,80%的工作都花在数据准备上面,而数据准备,80%的时间又花在数据清洗上,而数据清洗的工作,80%又花在选择若干种适当高效的方法上。

⑦ 数据清洗经验分享:什么是数据清洗 如何做好

如何去整理分析数据,其中一个很重要的工作就是数据清洗。数据清洗是指对“脏”数据进行对应方式的处理,脏在这里意味着数据的质量不够好,会掩盖数据的价值,更会对其后的数据分析带来不同程度的影响。有调查称,一个相关项目的进展,80%的时间都可能会花费在这个工作上面。因为清洗必然意味着要对数据有一定的理解,而这个工作是自动化或者说计算机所解决不了的难题,只能靠人脑对数据进行重新审查和校验,找到问题所在,并通过一些方法去对对应的数据源进行重新整理。
清洗数据的方式大概可以分为以下几类,筛选、清除、补充、纠正,例如:
去除不需要的字段:简单,直接删除即可。但要记得备份。

填充缺失内容:以业务知识或经验推测填充缺失值;以同一指标的计算结果(均值、中位数、众数等)填充缺失值;以不同指标的计算结果填充缺失值。
格式不一致:时间、日期、数值、全半角等显示格式不一致,这种问题通常与输入端有关,在整合多来源数据时也有可能遇到,将其处理成一致的某种格式即可。例如一列当中储存的是时间戳,某些跨国公司的不同部门在时间的格式上有可能存在差别,比如2019-01-12,2019/01/12等,这时候需要将其转换成统一格式。

内容中有不需要的字符:某些情况使得有些数据中包含不需要的字符。例如从网络爬到的数据会包含一些编码解码的字符如%22,这种情况下,需要以半自动校验半人工方式来找出可能存在的问题,并去除不需要的字符。

数据提取:例如咱们只有用户身份证的信息,但是需要用户生日一列,这时候我们可以直接从身份证号中按照一定规律将生日信息提取出来。

⑧ 请问怎么利用数据云完成数据清洗

数据清洗实际上是把数据垃圾变成数据资产的过程。数据云是通过搜集数据、管理数据以达到数据清洗的目的。赋予企业一个统一的视角,结合分析工具,将数据转化为360度全方位的洞察,用于各应用场景;现在Chinapex创略数据云首先通过数据收集工具 APEX PRISM智能收集整合第一方数据;接下来通过数据分析工具 APEX NEXUS整合企业多方数据来源,集成实时及非实时数据,最后通过API连通枢纽APEX LINK无缝对接各类应用场景。

⑨ 数据清洗的方法有哪些

现如今,科技得到了空前发展,正是由于这个原因,很多科学技术得到大幅度的进步。就在最近的几年里,出现了很多的名词,比如大数据、物联网、云计算、人工智能等。其中大数据的热度是最高的,这是因为现在很多的行业积累了庞大的原始数据,通过数据分析可以得到对企业的决策有帮助的数据,而大数据技术能够比传统的数据分析技术更优秀。但是,大数据离不开数据分析,数据分析离不开数据,海量的数据中有很多是我们我们需要的数据,也有很多我们不需要的数据。正如世界上没有完全纯净的东西,数据也会存在杂质,这就需要我们对数据进行清洗才能保证数据的可靠性。一般来说,数据中是存在噪音的,那么噪音是怎么清洗的呢?我们就在这篇文章中给大家介绍一下数据清洗的方法。
通常来说,清洗数据有三个方法,分别是分箱法、聚类法、回归法。这三种方法各有各的优势,能够对噪音全方位的清理。分箱法是一个经常使用到方法,所谓的分箱法,就是将需要处理的数据根据一定的规则放进箱子里,然后进行测试每一个箱子里的数据,并根据数据中的各个箱子的实际情况进行采取方法处理数据。看到这里很多朋友只是稍微明白了,但是并不知道怎么分箱。如何分箱呢?我们可以按照记录的行数进行分箱,使得每箱有一个相同的记录数。或者我们把每个箱的区间范围设置一个常数,这样我们就能够根据区间的范围进行分箱。其实我们也可以自定义区间进行分箱。这三种方式都是可以的。分好箱号,我们可以求每一个箱的平均值,中位数、或者使用极值来绘制折线图,一般来说,折线图的宽度越大,光滑程度也就越明显。
回归法和分箱法同样经典。回归法就是利用了函数的数据进行绘制图像,然后对图像进行光滑处理。回归法有两种,一种是单线性回归,一种是多线性回归。单线性回归就是找出两个属性的最佳直线,能够从一个属性预测另一个属性。多线性回归就是找到很多个属性,从而将数据拟合到一个多维面,这样就能够消除噪声。
聚类法的工作流程是比较简单的,但是操作起来确实复杂的,所谓聚类法就是将抽象的对象进行集合分组,成为不同的集合,找到在集合意外的孤点,这些孤点就是噪声。这样就能够直接发现噪点,然后进行清除即可。
关于数据清洗的方法我们给大家一一介绍了,具体就是分箱法、回归法、聚类法。每个方法都有着自己独特的优点,这也使得数据清洗工作能够顺利地进行。所以说,掌握了这些方法,有助于我们后面的数据分析工作。

⑩ 如何清洗脏数据

1、准备工作
拿到数据表之后,先做这些准备工作,方便之后的数据清洗。
(1)给每一个sheet页命名,方便寻找
(2)给每一个工作表加一列行号,方便后面改为原顺序
(3)检验每一列的格式,做到每一列格式统一
(4)做数据源备份,防止处理错误需要参考原数据
(5)删除不必要的空行、空列
2、统一数值口径
这是个无聊而必要的步骤。例如我们统计销售任务指标,有时用合同金额有时用回款金额,口径经常不统一。统计起来就很麻烦。所以将不规范的数值改为规范这一步不可或缺。
3、删掉多余的空格
原始数据中如果夹杂着大量的空格,可能会在我们筛选数据或统计时带来一定麻烦。如何去掉多余的空格,仅在字符间保留一个空格?
(1)手动删除。如果只有三五个空格,这可能是最快的方式。
(2)函数法
在做数据清洗时,经常需要去除数据两端的空格,那么TRIM、LTRIM、RTRIM这3个函数就可以帮到你啦~
TRIM函数:主要是用来去除单元格内容前后的空格,但不会去除字符之间的空格。表达式:=TRIM(文本)
ps:LTRIM、RTRIM与TRIM函数的使用方法一样~
LTRIM函数:用来去除单元格内容左边的空格;RTRIM函数:用来去除单元格内容右边的空格。
4、字段去重
强烈建议把去重放在去除空格之后,因为多个空格导致工具认为“顾纳”和“顾 纳”不是一个人,去重失败。
按照“数据”-“删除重复项”-选择重复列步骤执行即可。(单选一列表示此列数据重复即删除,多选表示多个字段都重复才删除。)

数据清洗从名字上也看的出就是把“脏”的“洗掉”,指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。

因为数据仓库中的数据是面向某一主题的数据的集合,这些数据从多个业务系统中抽取而来而且包含历史数据,这样就避免不了有的数据是错误数据、有的数据相互之间有冲突,这些错误的或有冲突的数据显然是我们不想要的,称为“脏数据”。

阅读全文

与如何数据清洗相关的资料

热点内容
数据统计员一个月多少钱 浏览:187
化工重芳烃精制的产品是什么 浏览:365
短线投机有哪些技术 浏览:225
苏州哪里有核心技术 浏览:452
襄阳职业技术学院附近有什么 浏览:881
nba有哪些令人惊艳的数据 浏览:665
纤伏代理怎么样 浏览:373
如何查看自己定向佣金产品 浏览:122
简历配偶信息怎么写 浏览:564
商贸代理怎么做 浏览:63
hmi模具加工有哪些技术 浏览:55
完美芦荟胶怎么代理 浏览:439
合约交易避开8点能省多少手续费 浏览:448
人类目前缺什么技术 浏览:431
警察与程序员哪个好 浏览:708
梦见临时市场在哪里 浏览:420
交易所流水是什么 浏览:153
小程序代理怎么找客 浏览:915
学电子技术专业的笔记本要什么配置 浏览:810
特效生发产品有哪些 浏览:725