A. 这种数据可视化的图是用什么软件做的
PPT内嵌表格,在表格中填入相关数据
然后设计PPT表现形式就好了。
如果是动态的就需要做几组相关数据,内嵌PPT里。
B. 如何做数据可视化的效果
可以借助数据可视化分析软件呀。如果数据太多,不好好的做数据可视化分析根本无法判断好坏;没有达到数据可视化的话,很多问题容易被隐藏。数据可视化分析一般通过仪表盘、柱状图、折线图以及各类图表的展现,以更易理解的方式来诠释数据之间的复杂关系和发展趋势,以便更好地利用数据分析结果。——奥 威 BI 好 用
可以看看
C. 未来我们如何做好数据可视化
我们在学数据分析的过程中会接触很多的知识,比如数据挖掘、数据分析等。其中数据分析中最后一个工作就是数据可视化,而数据可视化是数据分析工作中最简单也是最为重要的一道最后工序,如果数据可视化做不好,就无法很好地表达数据分析的结果,那么数据分析做的再好也是无用的,因为无法让别人理解。由此我们看出数据可视化的重要性,现在数据可视化的发展有了很大的进步,那么在未来我们如何做好数据可视化呢?
其实数据可视化和信息的传播融合发展是一个极好的道路,而这个信息传播最好是和新闻传播挂钩,这样就能够让数据可视化和新闻传播共同发展。在大数据时代意味着一切皆可被数据化,一般来说,新闻媒体肩负着监督环境、传播信息、对周围世界变化。提到数据新闻,就是数据可视化让传统的新闻嗅觉、讲述引人入胜的故事的能力和海量的数据信息结合在一起的可能性。通过对数据整理归纳,以及视觉效果包装,然后搭建新闻讲述框架,共同用数据可视化方式为受众提供直观或交互式阅读体验,这样就能够大幅度提升了信息传播效果。
当然,新闻的内容只有深刻的理解才能够报道出深刻的感觉,但是在实际操作中,记者不能事事亲历,有时候很难把报道中的主观成分全媒体时代,如果人人都能够报道新闻,那么海量信息就会彼此关联松散,让个体产生信息焦虑。而深度报道中,如何让历史数据和事实更有可视性和可性度是我们需要注意的问题,这就需要数据可视化来解决。在数据搜集和分析过程中,直接加强了记者对新闻主题和背景的理解,为讲好新闻故事提供逻辑线索,以数据为基石确保新闻的真实性和客观性。可视化以通俗易懂的方式,可以利用各种专业软件抓取、分析并形象化呈现数据,增强了新闻的艺术性和技术性。
所以说我们需要培养能够为数据可视化服务的相关人才。具体的方式就是在数据记者方面,应该提升挑选题、挖掘数据和编辑数据的业务水平,获取,分析和发现具有新闻价值的数据;新闻应用程序开发者,应提高数据深度研究、数据运算、从多种渠道快速获取数据等方面的能力。当然在大数据时代下,新闻教育应该拓宽视野,实行文理结合,通过文理交融,让学生有更多的机会学习如何获取数据、理解数据和展示数据,解决了相关人才匮乏的问题。数据可视化等应用技术加快推进传统媒体和新兴媒体融合发展,充分运用新技术新应用创新。媒体发展时也多次强调创新新闻传播手段,适应社会信息传播技术,打造具有竟争力、传播力、公信力和影响力的媒体。
在这篇文章中我们给大家介绍了对未来数据可视化的展望,其实通过这篇文章我们不难发现,数据可视化能够解决现在媒体面对的很大的问题,也间接明白了大数据无意间改变了我们的生活方式,希望这篇文章能够更好地帮助大家理解数据可视化。
D. 如何将数据进行数据可视化展现
当前,许多企业已建立了自己的人力资源管理系统,也累积了相当的人力资源业务数据。然而,正如业内的那句老话“rich data, poor information”,以前累积的数据,并没有很好的得到利用。原因是这些数据来源太广,格式不统一,并且其中极少量的数据记录格式不正确;同时,累计的数据量相当庞大,但许多细节对高层管理人员来说并不重要,他们需要快速、全面的掌握企业的人力资源全貌,综合、全面、宏观的信息支持,将是领导们关注的对象。
面对庞大复杂的员工管理数据,企业高管人员需要通过数据来了解他们的员工会做什么?应该雇佣谁?应该晋升谁?谁是顶层员工?谁有可能离职?
在数据分析方面,借助于DataViz自助式数据分析和可视化展现功能,深度挖掘人力资源数据,通过可视化动态交互探索数据规律。辅助企业高管更加直观和高效地洞悉潜藏在数据背后的知识与智慧。
E. 数据可视化是怎样创造出来的
数据可视化 Data Visualization 和信息可视化 Infographics 是两个相近的专业领域名词。狭义上的数字可视化指的是讲数据用统计图表方式呈现,而信息图形(信息可视化)则是将非数字的信息进行可视化。前者用于传递信息,后者用于表现抽象或复杂的概念、技术和信息。
而广义上的数据可视化则是数据可视化、信息可视化以及科学可视化等等多个领域的统称。
数据可视化起源于1960s计算机图形学,人们使用计算机创建图形图表,可视化提取出来的数据,将数据的各种属性和变量呈现出来。随着计算机硬件的发展,人们创建更复杂规模更大的数字模型,发展了数据采集设备和数据保存设备。同理也需要更高级的计算机图形学技术及方法来创建这些规模庞大的数据集。随着数据可视化平台的拓展,应用领域的增加,表现形式的不断变化,以及增加了诸如实时动态效果、用户交互使用等,数据可视化像所有新兴概念一样边界不断扩大。
而我们熟悉的那些饼图、直方图、散点图、柱状图等,是最原始的统计图表,它们是数据可视化的最基础和常见应用。作为一种统计学工具,用于创建一条快速认识数据集的捷径,并成为一种令人信服的沟通手段。传达存在于数据中的基本信息。所以我们可以在大量PPT、报表、方案以及新闻见到统计图形。
但最原始统计图表只能呈现基本的信息,发现数据之中的结构,可视化定量的数据结果。
面对复杂或大规模异型数据集,比如商业分析、财务报表、人口状况分布、媒体效果反馈、用户行为数据等,数据可视化面临处理的状况会复杂得多。
可能要经历包括数据采集、 数据分析、数据治理、数据管理、数据挖掘在内的一系列复杂数据处理,然后由设计师设计一种表现形式,是立体的、二维的、动态的、实时的还是允许交互的。然后由工程师创建对应的可视化算法及技术实现手段。包括建模方法、处理大规模数据的体系架构、交互技术、放大缩小方法等。动画工程师考虑表面材质、动画渲染方法等,交互设计师也会介入进行用户交互行为模式的设计。
所以一个数据可视化作品或项目的创建,需要多领域专业人士的协同工作才能取得成功。人类能够操纵和解释如此来源多样、错综复杂跨领域的信息,其本身就是一门艺术。
F. 数据可视化是什么啊怎么做
何为数据可视化?
这里主要是指工作场景中的数据可视化(海报类、信息图不在范围内)。
数据可视化就是承接数据分析之后的数据展示,包括图表设计、动效组合,形成二维图表,三维视图、联动钻取,搭配成大屏……
数据可视化的功能主要体现在两个方面:一是数据展示;二是业务分析。数据展示很好理解,就是将已知的数据或数据分析结果通过可视化图表的方式进行展示,形成报表、看板、dashboard、甚至配合现在流行的大屏展示技术,数据展示的方式也越来越为人所接受和欢迎。业务分析就是在看到图表、dashboard、大屏之后,将所分析的度量和数据有效地转化为有商业价值的见解,使其能够为基于事实所做的决策提供支持。
数据可视化的工具
对于数据可视化,有诸多工具,如:
1、图表类插件:ECharts、Highcharts、D3js等功能都十分强大。
2、数据报表类:Excel、金蝶、FineReport等,对于日常的报表制作,易学实用。
3、可视化BI类:比如cognos、tableau等,更直接地针对业务分析。
以上,前两者是纯粹的可视化图标,后两者涵盖从数据采集、分析、管理、挖掘、可视化在内的一系列复杂数据处理。
如何实现可靠的数据可视化?
数据可视化最终还要回归到“阅读者”,通过传递有指向性的数据,找出问题所在,制定正确决策。所以数据的价值不在于被看到,而在于看到之后所引起的思考和行动。
这里,企业内数据还不同于普通的应用数据,它们大多不是通过算法程序直接产生价值应用于用户,而是通过合理的展示和分析,再经应用者或管理者思考和判断,最后采取行动,从而发挥价值。
1、谁是可视化的受益者
无论你在做一份传统的报表,汇报的PPT还是其他,首先需要搞清楚这是给谁看的,他需要了解哪些事项,关注那些指标,在决策过程中会如何利用你展示的信息和数据,一句话概括就是搞清楚数据分析工作的目标,这一张报表是用来做什么的。后续的数据分析工作和分析报告里所要呈现的全部内容,之后都是要紧紧围绕着这个目标主题而服务的。
2、梳理指标体系
数据可视化是要讲繁杂的各条数据,梳理成指标,围绕每个业务财务、销售、供应链、生产等形成指标体系,最后通过可视化的方式展现,比如回款率、收益效率….
可以说,数据分析工作是否成功,大体就在指标的梳理。这个工作需要数据中心的人员或者BI组的人员深入业务一线去调研需求,拉来数据,建好数仓….
【指标体系分享】
如何针对业务场景做数据分析-零售业管理指标
数据化管理的指标体系大全(一),店铺与销售
数据化管理的指标体系大全(二),商品、电商、战略决策
分析生产和库存,靠这一套指标就够了!
将数据可视化与业务方案结合起来
G. 大神们有什么简单易用的动态数据可视化工具推荐吗
用excel实现动态展示台繁琐了.,想做个数据向下钻取都弄不好
下载了个水晶易表,无奈网上教程少之又少
最近搜到一个Echarts,,开源工具,程序一堆一堆的....
像我这种学渣,想做个动态图表有那么难吗
H. 怎样从零开始学数据可视化图表制作
1. 可视化是连接用户和数据的桥梁,是我们向用户展示我们的成果的一种手段,因此可视化并不是非常特化的研究领域,它可以有非常广泛的应用和创建途径。作为非计算机专业的人员,你可以借助现有的程序和软件,根据自己数据的特点,绘制清楚直观的图表。Excel,SPSS,Google Public Data 等。一些博客也会介绍常用的可视化工具,比如 22个免费的数据可视化和分析工具推荐。2. 如果你拥有一定的编程基础,可以尝试使用一些编程或者数学工具来进行自定义图表绘制,比如 Mathematica,R,ProtoType等。3. 更进一步,你就可以用编程语言来写自己的可视化系统了。这样你就会有很自由的发挥空间和操控能力,数据处理,表现形式,交互方式等都可以有很自主的设计。4. 入门书的话,你可以去看看 Edward Tufte 的一些书籍。