① 什么是数据库维度 怎么理解怎么用做什么用的 能否通俗易懂的说明。谢谢。
举个简单例子:
有一个数据库是保存着电脑在全国的销售额,字段分别为:产品编号,产品类型,区域,省份,城市,销售季度,销售额
在上面那个表中,除开产品编号与销售额外,其他的字段都算是维度,可以从这些维度来分析产品在全国的销售情况。通常是在数据分析与挖掘中用到。与维度相对的是度量,即是销售额。
② 能不能解释一下数据库当中这个维度用来干嘛的……我看不懂……
数学里面,属于多元函数的问题。即一个量受多个因素的影响。例如商品的信息,有商品的类别,商品的价格,商品的材质等等。就好像去描述一个未知的东西,如果描述的越详细,我们就越快知道是什么东西。例如去买衣服,就需要知道穿的对象,衣服的季节,颜色,款式等等。数据库信息的存储也是如此,分类越细,历史信息就越明确。增加纬度,就是增加描述的类别。
③ 什么叫数据库(表)的维度啊
从多个角度(时间、地域、机构等方面)研究一个对象的信息,其中,被研究对象为实体,研究角度就成为维度。
④ 什么是数据的维数
数据的维数一般是指数据不相干的几种特性,如对温度采集得到的一串数据序列,每一个数字代表着两个个属性,时间,温度大小。对于不同的研究对象,所得到的数据维数不同,因为他们的属性不同。
⑤ 多维数据库是什么
多维数据库(Multi Dimensional Database,MDD)可以简单地理解为:将数据存放在一个n维数组中,而不是像关系数据库那样以记录的形式存放。因此它存在大量稀疏矩阵,人们可以通过多维视图来观察数据。多维数据库增加了一个时间维,与关系数据库相比,它的优势在于可以提高数据处理速度,加快反应时间,提高查询效率。
⑥ 什么是数据库维度
从多个角度(时间、地域、机构等方面)研究一个对象的信息,其中,被研究对象为实体,研究角度就成为维度。
⑦ 怎么理解数据库中的维度属性
搜索一下数据设计范式。
⑧ 维度数据库采用什么来描述数据或关系
纬度数据库所描述的关系模式就是关系的描写关系模式,首先描绘与关系对应的两个维度的表结构,这些关系中都包含着一些属性,这些属性都来自于固定的领域,以及与域之间的映象关系。
关系是n个域的笛卡儿积的子集,组成关系的元组必须是笛卡儿积中使n目谓词为真的元组,所有有可能的关系必须满足非常完整并且基础的约束条件,而关系模式也要把这个约束条件描述出来。
在这其中关系模式和关系的区别就在于关系模式,主要就是描述一些数据结构的语句意思,而关系是一个数据的集合,是关系的值,是关系模式的一个关系实例。
数据库维度的基本概念:
1、多维数据集。多维数据集是联机分析处理(OLAP)中的主要对象,是一项可对数据仓库中的数据进行快速访问的技术。多维数据集是一个数据集合,通常从数据仓库的子集构造,并组织和汇总成一个由一组维度和度量值定义的多维结构。
2、xx(dimension)是多维数据集的结构性特性。它们是事实数据表中用来描述数据的分类的有组织层次结构(级别)。这些分类和级别描述了一些相似的成员集合,用户将基于这些成员集合进行分析。
3、度量值。在多维数据集中,度量值是一组值,这些值基于多维数据集的事实数据表中的一列,而且通常为数字。此外,度量值是所分析的多维数据集的中心值。
即,度量值是最终用户浏览多维数据集时重点查看的数字数据。您所选择的度量值取决于最终用户所请求的信息类型。一些常见的度量值有sales、cost、expenditures和proctioncount等。
4、元数据。不同OLAP组件中的数据和应用程序的结构模型。元数据描述OLTP数据库中的表、数据仓库和数据集市中的多维数据集这类对象,还记录哪些应用程序引用不同的记录块。
5、级别。级别是维度层次结构的一个元素。级别描述了数据的层次结构,从数据的最高(汇总程度最大)级别直到最低(最详细)级别。
6、数据挖掘。数据挖掘使您得以定义包含分组和预测规则的模型,以便应用于关系数据库或多维OLAP数据集中的数据。之后,这些预测模型便可用于自动执行复杂的数据分析,以找出帮助识别新机会并选择有获胜把握的机会的趋势。
7、多维OLAP(MOLAP)。MOLAP存储模式使得分区的聚合和其源数据的复本以多维结构存储在分析服务器计算机上。根据分区聚合的百分比和设计,MOLAP存储模式为达到最快查询响应时间提供了潜在可能性。总而言之,MOLAP更加适合于频繁使用的多维数据集中的分区和对快速查询响应的需要。
8、关系OLAP(ROLAP)。ROLAP存储模式使得分区的聚合存储在关系数据库的表(在分区数据源中指定)中。但是,可为分区数据使用ROLAP存储模式,而不在关系数据库中创建聚合。
9、数据钻取。最终用户从常规多维数据集、虚拟多维数据集或连接多维数据集中选择单个单元,并从该单元的源数据中检索结果集以获得更详细的信息,这个操作过程就是数据钻取。
10、数据挖掘模型。数据挖掘使您得以定义包含分组和预测规则的模型,以便应用于关系数据库或多维OLAP数据集中的数据。之后,这些预测模型便可用于自动执行复杂的数据分析,以找出帮助识别新机会并选择有获胜把握的机会的趋势。