A. 国内大数据行业有哪些比较知名的公司
海鳗云旅游大数据平台,就是专业做旅游大数据的公司,拥有自己的旅游大数据平台。
B. 国内做大数据的公司有哪些
1、上海市大数据股份有限公司(简称“上海大数据股份”),是经上海市人民政府批准成立的国有控股混合所有制企业。
致力于成为智慧城市建设的主力军、国内大数据应用领域的领军企业和全球领先的公共大数据管理和价值挖掘解决方案提供商,满足政府对公共数据治理和提升城市管理及公共服务水平的要求,构建公共大数据与商业数据服务、以及政企数据融合的桥梁,促进社会经济发展。
2、辉略(上海)大数据科技有限公司,目前在中国交通(城市智能信号灯优化模型与平台,交通预算决策系统模型等)、环境(PM2.5污染检测和治理)、医疗(医院WIFI定位模型,病历匹配模型等)、汽车(用户购买转化率模型)等领域进行大数据项目运营与模型开发。
3、成都市大数据股份有限公司成立于2013年,作为成都市实施国家大数据发展战略的载体,2018年完成股份制改革并挂牌新三板,成都产业集团全资持股,主要涉及数据运营、投资并购、信息技术三大业务方向。
(2)哪些行业有大数据扩展阅读:
大数据发展的一些趋势:
趋势一:数据的资源化
何为资源化,是指大数据成为企业和社会关注的重要战略资源,并已成为大家争相抢夺的新焦点。因而,企业必须要提前制定大数据营销战略计划,抢占市场先机。
趋势二:与云计算的深度结合
大数据离不开云处理,云处理为大数据提供了弹性可拓展的基础设备,是产生大数据的平台之一。自2013年开始,大数据技术已开始和云计算技术紧密结合,预计未来两者关系将更为密切。除此之外,物联网、移动互联网等新兴计算形态,也将一齐助力大数据革命,让大数据营销发挥出更大的影响力。
C. 大数据可以应用在哪些行业
1)第一大类是互联网和营销行业。
互联网行业是离消费者距离最近的行业,同时拥有大量实时产生的数据。业务数据化是其企业运营的基本要素,因此,互联网行业的大数据应用的程度是最高的。与互联网行业相伴的营销行业,是围绕着互联网用户行为分析,以为消费者提供个性化营销服务为主要目标的行业。
2)第二大类是信息化水平比较高的行业。
如金融、电信等行业。它们比较早地进行信息化建设,内部业务系统的信息化相对比较完善,对内部数据有大量的历史积累,并且有一些深层次的分析类应用,目前正处于将内外部数据结合起来共同为业务服务的阶段。
3)第三类是政府及公用事业行业。
不同部门的信息化程度和数据化程度差异较大,例如,交通行业目前已经有了不少大数据应用案例,但有些行业还处在数据采集和积累阶段。政府将会是未来整个大数据产业快速发展的关键,通过政府及公用数据开放可以使政府数据在线化走得更快,从而激发大数据应用的大发展。
4)第四类是制造业、物流、医疗、农业等行业。
它们的大数据应用水平还处在初级阶段,但未来消费者驱动的 C2B 模式会倒逼着这些行业的大数据应用进程逐步加快。
D. 大数据有关的工作有哪些
1、数据挖掘工程师
数据建模、机器学习和算法实现;商业智能,用户体验分析,预测流失用户等;需要过硬的数学和统计学功底以外,对算法的代码实现也有很高的要求
2、数据架构师
需求分析,平台选择,技术架构设计,应用设计和开发,测试和部署;高级算法设计与优化;数据相关系统设计与优化,需要平台级开发和架构设计能力。成都加米谷大数据培训机构,大数据开发,数据分析与挖掘。
3、数据库开发
设计,开发和实施基于客户需求的数据库系统,通过理想接口连接数据库和数据库工具,优化数据库系统的性能效率等
4、数据库管理
数据库设计、数据迁移、数据库性能管理、数据安全管理,故障检修问题、数据备份、数据恢复等
5、数据科学家
数据挖掘架构、模型标准、数据报告、数据分析方法;利用算法和模型提高数据处理效率、挖掘数据价值、实现从数据到知识的转换
6、数据产品经理
把数据和业务结合起来做成数据产品;平台线提供基础平台和通用的数据工具,业务线提供更加贴近业务的分析框架和数据应用
E. 大数据都有哪些就业方向
大数据是IT行业的新宠,前景好,薪资高,越来越多的人想要转行大数据,开始学习大数据,但是对于转型着来说,面对全新的行业,它的就业前景怎么样呢,学了大数据又能从事哪些工作呢?
大数据行业人才稀缺,市场需求量大。目前大数据行业人才仅为50万,而实际上整个行业人才需求超100万,可谓人才缺口巨大。而且,大数据覆盖各行各业,应用领域十分广泛。大数据在金融、医疗、交通、电商、农业等多个行业都有应用。近年来人工智能、物联网也是迅速发展,而大数据也是这些新兴技术的基础,未来大数据还将成为全行业的基石。
大数据行业的薪资也是普遍较高的。IT行业本就是薪资较高的行业,而大数据作为IT行业的新宠,高薪也是很常见的。目前,大数据行业的平均月薪能够在15K-20K左右,非常优秀的大数据人才月薪30K也是有的,所以说大数据也是个高薪的职业。
对于大数据的就业方向,实际上可以划分为三个大类,一、大数据开发;二、系统研发;三、大数据分析。而对应的基础岗位为:一、大数据开发工程师;二、大数据系统研发工程师;三、大数据分析师。
1、大数据开发工程师
大数据开发工程师,精简到一个词语就是:统计;精简到两类指标就是:PV和UV;精简到一句话就是:统计各种指标的PV和UV。当然,具体的工作,并不是这么的简单,还需要从业者具备hadoop、spark、kafka、python等知识的应用。
2、Hadoop开发工程师
信息时代数据的爆发式增长,使得数据的规模越来越大,传统BI(即商务智能)的数据处理成本高涨,加剧了企业的负担。而Hadoop廉价的数据处理能力被重新挖掘,企业需求持续增长。
3、信息架构工程师
信息架构师需要懂得如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。当然,这也就是信息架构工程师的工作。
4、大数据分析师
大数据分析师需要对海量的大数据做分析、挖掘和展现,并且将其中有价值的信息提取出来为决策提供支持,而大数据分析师实际上就是从事这类工作的从业人员。大数据分析师不仅要具备数据分析知识,作为高级大数据分析师,还要掌握大数据技术相关知识,如Hadoop、Python等,具备更为综合的大数据知识体系。
其实这些岗位还只是大数据行业的一部分,由于目前大数据的利用还在不断探索研究中,未来还将有更多细分领域应用到大数据,也会增加更多的就业机会,所以,让我们继续关注大数据行业,拭目以待吧!
F. 目前大数据在哪些行业有案例或者说应用
大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。
大数据应用案例之:医疗行业
Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
大数据应用案例之:能源行业
智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。
大数据应用案例之:通信行业
XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取措施,保留客户。此外,IBM新的Netezza网络分析加速器,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。
电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。
中国移动通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。
NTT docomo把手机位置信息和互联网上的信息结合起来,为顾客提供附近的餐饮店信息,接近末班车时间时,提供末班车信息服务。
大数据应用案例之:零售业
"我们的某个客户,是一家领先的专业时装零售商,通过当地的百货商店、网络及其邮购目录业务为客户提供服务。公司希望向客户提供差异化服务,如何定位公司的差异化,他们通过从 Twitter 和 Facebook 上收集社交信息,更深入的理解化妆品的营销模式,随后他们认识到必须保留两类有价值的客户:高消费者和高影响者。希望通过接受免费化妆服务,让用户进行口碑宣传,这是交易数据与交互数据的完美结合,为业务挑战提供了解决方案。"Informatica的技术帮助这家零售商用社交平台上的数据充实了客户主数据,使他的业务服务更具有目标性。
零售企业也监控客户的店内走动情况以及与商品的互动。它们将这些数据与交易记录相结合来展开分析,从而在销售哪些商品、如何摆放货品以及何时调整售价上给出意见,此类方法已经帮助某领先零售企业减少了17%的存货,同时在保持市场份额的前提下,增加了高利润率自有品牌商品的比例。
G. 大数据可以应用在哪些行业
制造业:利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
金融业:大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
汽车行业:利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
互联网行业:借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
餐饮行业:利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式。
电信行业:利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
能源行业:随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
物流行业:利用大数据优化物流网络,提高物流效率,降低物流成本。
城市管理:利用大数据实现智能交通、环保监测、城市规划和智能安防。
生物医学:大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘。
H. 大数据行业有哪些岗位
一、数据分析师/数据科学家
从本质来说数据分析师和数据科学家是相同的,因为他们做同样的事情——从数据中获取价值。价值可以有不同的形式:对于数据分析师来说,价值意味着洞察,而对于数据科学家来说,是在洞察之上的产品发展智能。
数据分析师分析数据以获得洞察,并帮助形成业务决策。而数据科学家更关心的是使用机器学习和 A / B 测试来驱动和改进产品。
数据科学家专注于前瞻,即做出预测,而数据分析师则更多地聚焦在回顾,如分析历史数据。
二、数据工程师
没有数据工程师的帮助,数据科学家就无法做出贡献。为什么?由于数据工程师构建了引入数据的数据管道!如同炼油厂闲置,是由于没有原油进入,最终原因是石油管道还没有建成。
三、业务分析师(各种职能)
传统的 BA 引导,记录业务需求并充当业务和技术之间的联络人。相反,我们使用业务分析师的头衔作为总括头衔来涵盖所有具有业务性质(非技术性)且需要重要数据技能的分析师角色。
四、BI分析师/工程师/开发人员
我们还拥有传统的商业智能( BI )分析师和商业智能工程师角色。一般来说,当我们谈论 BI 时,我们指的是使用“定义良好的BI基础设施”在“大公司”环境中进行数据分析和报告,基础设施指的是各种企业软件系统( ERP,CRM 等)以及在他们之上进行连接和报告 BI 工具。
关于大数据行业有哪些岗位,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。
I. 大数据在哪些行业有前景
1、医疗器械职业
医疗器械职业有着许多的病案,病理陈述,痊愈计划计划,药品陈述这些。在将来,凭借数据管理平台人们可以收集不一样病案和治疗计划计划,及其患者的本质特征,可以创立关于病症特性的数据库查询。
2、生物科技在基因剖析
依据数据管理平台人们可以将自身和植物体基因剖析的结果展开纪录和储存,运用创立应用场景云计算技术的遗传基因数据库查询。这将会加速自身遗传基因和其他他微生物的遗传基因的科学研究体系进程。
3、金融业
金融职业对大数据的应用,是有着宽广的空间的:大数据营销:依据顾客消费习惯性、所在位置、消费时间展开强烈推荐。风险防控:依据顾客消费和现金流量出示资信评级或股权融资适用,运用顾客社交媒体个人行为纪录透支卡风控。管理决策适用:运用数据剖析陈述执行产业链贷款风险操作。
4、零售业
零售业大数据的应用有2个方面,一个方面是零售业可以掌握顾客消费喜好和发展趋势,展开货品的大数据营销,减少营销推广成本费。另一个方面是依据顾客选购商品,为顾客出示将会选购的其他商品,扩张销售总额,也归属于大数据营销层面。
5、电商职业
电商职业统计数据运用将会有很多的想象空间,包括分折潮流趋势,消费发展趋势、区域消费特性、顾客消费习惯性、各种各样消费者行为的相关性、消费市场、损害消费的要害要素等。
关于大数据在哪些行业有前景,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。