导航:首页 > 数据处理 > 大数据关键技术有哪些

大数据关键技术有哪些

发布时间:2022-02-05 21:08:56

‘壹’ 大数据的关键技术有哪些

大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

一、大数据采集技术

数据是指通过RFID射频数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得的各种类型的结构化、半结构化(或称之为弱结构化)及非结构化的海量数据,是大数据知识服务模型的根本。

二、大数据预处理技术

主要完成对已接收数据的辨析、抽取、清洗等操作。1)抽取:因获取的数据可能具有多种结构和类型,数据抽取过程可以帮助我们将这些复杂的数据转化为单一的或者便于处理的构型,以达到快速分析处理的目的。2)清洗:对于大数据,并不全是有价值的,有些数据并不是我们所关心的内容,而另一些数据则是完全错误的干扰项,因此要对数据通过过滤“去噪”从而提取出有效数据。

三、大数据存储及管理技术

大数据存储与管理要用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。重点解决复杂结构化、半结构化和非结构化大数据管理与处理技术。主要解决大数据的可存储、可表示、可处理、可靠性及有效传输等几个关键问题。

四、大数据分析及挖掘技术

大数据分析技术。改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。

六、大数据展现与应用技术

大数据技术能够将隐藏于海量数据中的信息和知识挖掘出来,为人类的社会经济活动提供依据,从而提高各个领域的运行效率,大大提高整个社会经济的集约化程度。在我国,大数据将重点应用于以下三大领域:商业智能、政府决策、公共服务。例如:商业智能技术,政府决策技术,电信数据信息处理与挖掘技术,电网数据信息处理与挖掘技术,气象信息分析技术,环境监测技术,警务云应用系统(道路监控、视频监控、网络监控、智能交通、反电信诈骗、指挥调度等公安信息系统)本回答根据网络文库资料整理,原文请参见《大数据关键技术》

‘贰’ 哪些技术是属于大数据的关键技术

3、大数据的关键技术
1.分布式存储系统(HDFS)。2.MapRece分布式计算框架。3.YARN资源管理平台。4.Sqoop数据迁移工具。5.Mahout数据挖掘算法库。6.HBase分布式数据库。7.Zookeeper分布式协调服务。8.Hive基于Hadoop的数据仓库。9.Flume日志收集工具。

‘叁’ 大数据的数据科学与关键技术是什么

对于大数据想必大家都有所了解了吧?随着信息化的不断发展,大数据也越来越被人们所熟知。我们都知道,现在很多行业都离不开数据分析,在数据分析中我们有听说了大数据,大数据涉及到了很多的行业,一般来说,大数据涉及到了金融、交通、医疗、安全、社交、电信等等。由此可见,大数据面向的方向有很多,面向的范围很广。我们可以把大数据比喻成一个大容器,很多的东西都能够装在这个大容器中,但是大数据都是有一些技术组成的,那么大数据的数据科学和关键技术都是什么呢?在这篇文章我们就给大家解答一下这个问题。
通常来说,大数据的数据采集是通过传感器、智能终端设备、数据储存这三个方面组成,而通过传感器的大数据离不开物联网,通过智能终端的大数据离不开互联网,而数据的海量储存离不开云计算,最重要的就是大数据的计算分析采用机器学习,大数据的互动展示离不开可视化,所以我们需要知道大数据的数据科学和关键技术,只有这样我们才能够用好大数据。
首先我们来说说数据科学,数据科学可以理解为一个跨多学科领域的,从数据中获取知识的科学方法,技术和系统集合,其目标是从数据中提取出有价值的信息,它结合了诸多领域中的理论和技术,包括应用数学,统计,模式识别,机器学习,人工智能,深度学习,数据可视化,数据挖掘,数据仓库,以及高性能计算等。很多的领域都是离不开数据科学的。
那么数据科学的过程是什么呢?一般来说,数据科学的过程就是有原始数据采集,数据预处理和清洗,数据探索式分析,数据计算建模,数据可视化和报表,数据产品和决策支持等内容,而传统信息化技术多是在结构化和小规模数据上进行计算处理,大数据时代呢,数据变大了,数据多源异构了,需要智能预测和分析支持了,所以核心技术离不开机器学习、数据挖掘、人工智能等,另外还需考虑海量数据的分布式存储管理和机器学习算法并行处理,所以数据的大规模增长客观上促进了数据科学技术生态的繁荣与发展,包括大数据采集、数据预处理、分布式存储、MySQL数据库、多模式计算、多模态计算、数据仓库、数据挖掘、机器学习、人工智能、深度学习、并行计算、可视化等各种技术范畴和不同的层面。由此可见大数据是一门极度专业性的学科。
在这篇文章中我们给大家介绍了数据科学的关键技术的实际内容,大数据的数据科学的关键技术有很多,我们需要学习很多的知识,这样我们才能够触类旁通,让大数据更好地为我们服务。

‘肆’ 大数据技术有哪些 核心技术是什么

随着大数据分析市场迅速扩展,哪些技术是最有需求和最有增长潜力的呢?在Forrester Research的一份最新研究报告中,评估了22种技术在整个数据生命周期中的成熟度和轨迹。这些技术都对大数据的实时、预测和综合洞察有着巨大的贡献。
1. 预测分析技术
这也是大数据的主要功能之一。预测分析允许公司通过分析大数据源来发现、评估、优化和部署预测模型,从而提高业务性能或降低风险。同时,大数据的预测分析也与我们的生活息息相关。淘宝会预测你每次购物可能还想买什么,爱奇艺正在预测你可能想看什么,百合网和其他约会网站甚至试图预测你会爱上谁……
2. NoSQL数据库
NoSQL,Not Only SQL,意思是“不仅仅是SQL”,泛指非关系型数据库。NoSQL数据库提供了比关系数据库更灵活、可伸缩和更便宜的替代方案,打破了传统数据库市场一统江山的格局。并且,NoSQL数据库能够更好地处理大数据应用的需求。常见的NoSQL数据库有HBase、Redis、MongoDB、Couchbase、LevelDB等。
3. 搜索和知识发现
支持来自于多种数据源(如文件系统、数据库、流、api和其他平台和应用程序)中的大型非结构化和结构化数据存储库中自助提取信息的工具和技术。如,数据挖掘技术和各种大数据平台。
4. 大数据流计算引擎
能够过滤、聚合、丰富和分析来自多个完全不同的活动数据源的数据的高吞吐量的框架,可以采用任何数据格式。现今流行的流式计算引擎有Spark Streaming和Flink。
5. 内存数据结构
通过在分布式计算机系统中动态随机访问内存(DRAM)、闪存或SSD上分布数据,提供低延迟的访问和处理大量数据。
6. 分布式文件存储
为了保证文件的可靠性和存取性能,数据通常以副本的方式存储在多个节点上的计算机网络。常见的分布式文件系统有GFS、HDFS、Lustre 、Ceph等。
7. 数据虚拟化
数据虚拟化是一种数据管理方法,它允许应用程序检索和操作数据,而不需要关心有关数据的技术细节,比如数据在源文件中是何种格式,或者数据存储的物理位置,并且可以提供单个客户用户视图。
8. 数据集成
用于跨解决方案进行数据编排的工具,如Amazon Elastic MapRece (EMR)、Apache Hive、Apache Pig、Apache Spark、MapRece、Couchbase、Hadoop和MongoDB等。
9. 数据准备
减轻采购、成形、清理和共享各种杂乱数据集的负担的软件,以加速数据对分析的有用性。
10. 数据质量
使用分布式数据存储和数据库上的并行操作,对大型高速数据集进行数据清理和充实的产品。

‘伍’ 大数据的关键技术有哪些

预测分析:预测分析是一种统计或数据挖掘解决方案,包含可在结构化和非结构化数据中使用以确定未来结果的算法和技术。可为预测、优化、预报和模拟等许多其他用途而部署。

NoSQL数据库:非关系型数据库包括Key-value型(Redis)数据库、文档型(MonogoDB)数据库、图型(Neo4j)数据库;虽然NoSQL流行语火起来才短短一年的时间,但是不可否认,现在已经开始了第二代运动。尽管早期的堆栈代码只能算是一种实验,然而现在的系统已经更加的成熟、稳定。

搜索和认知商业:当今时代大数据与分析已经发展到一个新的高度,那就是认知时代,认知时代不再是简单的数据分析与展示,它更多的是上升到一个利用数据来支撑人机交互的一种模式。

流式分析:目前流式计算是业界研究的一个热点,最近Twitter、LinkedIn等公司相继开源了流式计算系统Storm、Kafka等,加上Yahoo!之前开源的S4,流式计算研究在互联网领域持续升温,流式分析可以对多个高吞吐量的数据源进行实时的清洗、聚合和分析;对存在于社交网站、博客、电子邮件、视频、新闻、电话记录、传输数据、电子感应器之中的数字格式的信息流进行快速处理并反馈的需求。目前大数据流分析平台有很多、如开源的spark,以及ibm的 streams 。

内存数据结构:通过动态随机内存访问(DRAM)、Flash和SSD等分布式存储系统提供海量数据的低延时访问和处理;

‘陆’ 哪些技术属于大数据的关键技术

大数据的知识又多又杂,最好是有一定的Java基础,其中Hadoop开发、spark、还有storm实时开发等都是很重要的技术

‘柒’ 大数据的核心技术有哪些

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等。

1、数据采集与预处理:

Flume NG实时日志收集系统,支持在日志系统中定制各类数据发送方,用于收集数据;

Zookeeper是一个分布式的,开放源码的分布式应用程序协调服务,提供数据同步服务。

2、数据存储:

Hadoop作为一个开源的框架,专为离线和大规模数据分析而设计,HDFS作为其核心的存储引擎,已被广泛用于数据存储。

HBase,是一个分布式的、面向列的开源数据库,可以认为是hdfs的封装,本质是数据存储、NoSQL数据库。

3、数据清洗:MapRece作为Hadoop的查询引擎,用于大规模数据集的并行计算

4、数据查询分析:

Hive的核心工作就是把SQL语句翻译成MR程序,可以将结构化的数据映射为一张数据库表,并提供 HQL(Hive SQL)查询功能。

Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。

5、数据可视化:对接一些BI平台,将分析得到的数据进行可视化,用于指导决策服务。

‘捌’ 大数据学习的关键技术是什么

1、机器学习:


机器学习是大数据处理承上启下的要害技能,机器学习往上是深度学习、人工智能,机器学习往下是数据发掘和计算学习。中心方针是经过函数映射、数据训练、最优化求解、模型评价等一系列算法完成让计算机拥有对数据进行自动分类和猜测的功用。 大数据处理要智能化,机器学习是中心的中心。


2、数据发掘:


数据发掘中心技能来自于机器学习领域,数据发掘的提法比机器学习要早,应用规模要广,数据发掘和机器学习是大数据剖析的中心技能,互为支撑,为大数据处理提供相关模型和算法,而模型和算法是大数据处理的要害。


3、人工智能:


AI的终极方针是机器智能化拟人化,机器能完成和人一样的作业,能够处理种种复杂的问题。


人工智能与机器学习的联系,两者的适当一部分技能、算法都是重合的,深度学习在计算机视觉和棋牌走步等领域取得了巨大的成功,但深度学习在现阶段还不能完成类脑计算,最多达到仿生层面,情感,回忆,认知,经验等人类独有能力机器在短期难以达到。


4、其它大数据处理根底技能:


大数据根底技能包括计算机科学相关如编程、机器学习的理论根底、商业剖析与理解、数据管理等。这些理论与技能是为大数据的根底管理、机器学习和应用决议计划等多个方面服务的。


关于大数据学习的关键技术是什么,青藤小编就和您分享到这里了。如果您对大数据工程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于数据分析师、大数据工程师的技巧及素材等内容,可以点击本站的其他文章进行学习。

‘玖’ 大数据处理有哪些关键技术

大数据关键技术涵盖数据存储、处理、应用等多方面的技术,根据大数据的处理过程,可将其分为大数据采集、大数据预处理、大数据存储及管理、大数据处理、大数据分析及挖掘、大数据展示等。
1、大数据采集技术
大数据采集技术是指通过 RFID 数据、传感器数据、社交网络交互数据及移动互联网数据等方式获得各种类型的结构化、半结构化及非结构化的海量数据。

因为数据源多种多样,数据量大,产生速度快,所以大数据采集技术也面临着许多技术挑战,必须保证数据采集的可靠性和高效性,还要避免重复数据。

2、大数据预处理技术

大数据预处理技术主要是指完成对已接收数据的辨析、抽取、清洗、填补、平滑、合并、规格化及检查一致性等操作。

因获取的数据可能具有多种结构和类型,数据抽取的主要目的是将这些复杂的数据转化为单一的或者便于处理的结构,以达到快速分析处理的目的。

3、大数据存储及管理技术

大数据存储及管理的主要目的是用存储器把采集到的数据存储起来,建立相应的数据库,并进行管理和调用。

4、大数据处理

大数据的应用类型很多,主要的处理模式可以分为流处理模式和批处理模式两种。批处理是先存储后处理,而流处理则是直接处理。

大数据无处不在,大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、体能和娱乐等在内的社会各行各业都已经融入了大数据的印迹。

1、制造业,利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。

2、金融行业,大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。

3、汽车行业,利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。

4、互联网行业,借助于大数据技术,可以分析客户行为,进行商品推荐和针对性广告投放。

5、电信行业,利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。

‘拾’ 大数据方面核心技术有哪些

简单来说,从大数据的生命周期来看,无外乎四个方面:大数据采集、大数据预处理、大数据存储、大数据分析,共同组成了大数据生命周期里最核心的技术,下面分开来说:

阅读全文

与大数据关键技术有哪些相关的资料

热点内容
市面上的信息流产品有哪些 浏览:358
plc如何读取dp口编码器数据 浏览:293
tst小代理如何做到创始人 浏览:270
京东物流信息怎么查询 浏览:877
如何理解期货市场交易的特殊性 浏览:421
技术员怎么给公司建议 浏览:661
不去人才市场如何转档案 浏览:638
华为手机哪个键是退出程序 浏览:951
如何给服务器做反向代理 浏览:646
医院实习能学到什么技术 浏览:244
苹果原装数据线怎么连接 浏览:62
如何应对跳空交易 浏览:293
微商代理服装鞋怎么样 浏览:537
翁向宏预测都有哪些技术 浏览:441
河南卫视没有信息怎么办 浏览:393
手游代理需要注意哪些 浏览:907
更新附加信息是什么 浏览:971
电子信技术是什么 浏览:39
二手车交易到本市怎么退档 浏览:619
如何通知老客户增加新产品 浏览:321