导航:首页 > 数据处理 > 大数据培训有哪些课程

大数据培训有哪些课程

发布时间:2022-02-04 06:28:16

① 零基础大数据培训课程有哪些

大数据包含的东西有很多,Linux基础与分布式集群技术这些都只是基础,目前也被称为大数据时代,这要看你的基础了,北京魔据教育有4-5个月的大数据培训班。希望能帮到你

② 大数据培训机构主要学习那些课程呢

大数据培训机构课程包括Java基础,前端技术(HTML,CSS,javascript),JavaWeb和数据库,Linux基础,Hadoop生态体系,Spark生态体系,Storm实时开发等,光环大数据所设置的课程能够满足多数企业对于大数据才的招聘需求,并融合市场的潮流技术点,同时定期更新,引入新技术。

③ 大数据要学哪些课程

大数据存储阶段:百hbase、hive、sqoop。
大数度据架构设计阶段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
大数据商业实战阶内段:实操企业大数据处理业务场景,分析需求、解决方案实施,技术实战应用。

④ 大数据培训机构培训内容有哪些

大数据培训机构培训内容主要是进行三方面的培训:

1、数据挖掘常用的理论和算法介绍,这个也是大多数商业培训机构的重点

2、大数据挖掘实操案例,对自己企业的一个真实案例去端到端的完成讲解,让学员对数据挖掘有更深刻的认识。

3、对于SPARK数据挖掘平台使用作介绍,也是实操性的,用的是SCALA语言,课时为16小时。

(4)大数据培训有哪些课程扩展阅读

应用开发:

基于大数据资源池、大数据平台的众多组件开发自己的应用,因此需要在应用的设计规范、环境集成方案、组件调用方式等各个方面提供培训,能搭积木一样完成自己的一个应用,这种模式要求较高,但价值可期。

这里涉及了《大数据应用开发之搭台唱戏》、《大数据实时计算解决方案及案例讲解》、《大数据产品建设经验分享及案例讲解》三门课程。

⑤ 大数据培训课程都包含哪些内容

老男孩教育的大数据培训课程内容包括:Java、Linux、Hadoop、Hive、Avro与Protobuf、ZooKeeper、HBase、Phoenix、Redis、Flume、SSM、Kafka、Scala、Spark、azkaban、Python与大数据分析

⑥ 大数据培训课程都学什么

基础阶段:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis。
hadoop maprece hdfs yarn:hadoop:Hadoop 概念、版本、历史,HDFS工作原理,YARN介绍及组件介绍。
大数据存储阶段:hbase、hive、sqoop。
大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。

大数据分析的几个方面:
1、可视化分析:可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。
2、数据挖掘算法:大数据分析的理论核心就是数据挖掘算法。
3、预测性分析:从大数据中挖掘出特点,通过科学的建立模型,从而预测未来的数据。
4、语义引擎:需要设计到有足够的人工智能以足以从数据中主动地提取信息。
5、数据质量和数据管理:能够保证分析结果的真实性

⑦ 有哪些好的大数据培训课程

在当地看看有什么相关的培训学校
具体咨询吧还是
每个学校的课程内容都是不一样的
这是三点共圆的大数据课程方向
你可以了解一下
基础部分
主要技能:
JavaSE、Linux操作基础、数据库、JSP、Servlet、JSP+Servlet+JDBC企业级项目介绍
Hadoop大数据阶段
主要技能:
初识Hadoop、HDFS体系结构和Shell以及Java操作、详细讲解MapRe
ce、MapRece案
Hive/HBase数据库
主要技能:
数据仓库Hive、分布式数据库HBase
Storm流式计算
主要技能:
全面掌握Storm内部机制和原理,Redis缓存系统课程大纲、Kafka课程、Storm实时数据处理
Spark内存计算
主要技能:
Scala课程、Spark大数据处理、Spark
Streaming实时计算实时数据处理
项目评审与就业服务
主要技能:
通过综合项目评审,掌握面试技巧,综合项目评审、就业常见问题的解决

⑧ 大数据培训课程介绍,大数据学习课程要学习哪些

以下介绍的课程主要针对零基础大数据工程师每个阶段进行通俗易懂简易介绍,方面大家更好的了解大数据学习课程。课程框架是科多大数据的零基础大数据工程师课程。
一、 第一阶段:静态网页基础(HTML+CSS)
1. 难易程度:一颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:html常用标签、CSS常见布局、样式、定位等、静态页面的设计制作方式等
4. 描述如下:
从技术层面来说,该阶段使用的技术代码很简单、易于学习、方便理解。从后期课程层来说,因为我们重点是大数据,但前期需要锻炼编程技术与思维。经过我们多年开发和授课的项目经理分析,满足这两点,目前市场上最好理解和掌握的技术是J2EE,但J2EE又离不开页面技术。所以第一阶段我们的重点是页面技术。采用市场上主流的HTMl+CSS。
二、 第二阶段:JavaSE+JavaWeb
1. 难易程度:两颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:java基础语法、java面向对象(类、对象、封装、继承、多态、抽象类、接口、常见类、内部类、常见修饰符等)、异常、集合、文件、IO、MYSQL(基本SQL语句操作、多表查询、子查询、存储过程、事务、分布式事务)JDBC、线程、反射、Socket编程、枚举、泛型、设计模式
4. 描述如下:
称为Java基础,由浅入深的技术点、真实商业项目模块分析、多种存储方式的设计
与实现。该阶段是前四个阶段最最重要的阶段,因为后面所有阶段的都要基于此阶段,也是学习大数据紧密度最高的阶段。本阶段将第一次接触团队开发、产出具有前后台(第一阶段技术+第二阶段的技术综合应用)的真实项目。
三、 第三阶段:前端框架
1. 难易程序:两星
2. 课时量(技术知识点+阶段项目任务+综合能力):64课时
3. 主要技术包括:Java、Jquery、注解反射一起使用,XML以及XML解析、解析dom4j、jxab、jdk8.0新特性、SVN、Maven、easyui
4. 描述如下:
前两个阶段的基础上化静为动,可以实现让我们网页内容更加的丰富,当然如果从市场人员层面来说,有专业的前端设计人员,我们设计本阶段的目标在于前端的技术可以更直观的锻炼人的思维和设计能力。同时我们也将第二阶段的高级特性融入到本阶段。使学习者更上一层楼。
四、 第四阶段:企业级开发框架
1. 难易程序:三颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:Hibernate、Spring、SpringMVC、log4j slf4j 整合、myBatis、struts2、Shiro、redis、流程引擎activity, 爬虫技术nutch,lucene,webServiceCXF、Tomcat集群和热备、MySQL读写分离
4. 描述如下:
如果将整个JAVA课程比作一个糕点店,那前面三个阶段可以做出一个武大郎烧饼(因为是纯手工-太麻烦),而学习框架是可以开一个星巴克(高科技设备-省时省力)。从J2EE开发工程师的任职要求来说,该阶段所用到的技术是必须掌握,而我们所授的课程是高于市场(市场上主流三大框架,我们进行七大框架技术传授)、而且有真实的商业项目驱动。需求文档、概要设计、详细设计、源码测试、部署、安装手册等都会进行讲解。
五、 第五阶段: 初识大数据
1. 难易程度:三颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:大数据前篇(什么是大数据,应用场景,如何学习大数据库,虚拟机概念和安装等)、Linux常见命令(文件管理、系统管理、磁盘管理)、Linux Shell编程(SHELL变量、循环控制、应用)、Hadoop入门(Hadoop组成、单机版环境、目录结构、HDFS界面、MR界面、简单的SHELL、java访问hadoop)、HDFS(简介、SHELL、IDEA开发工具使用、全分布式集群搭建)、MapRece应用(中间计算过程、Java操作MapRece、程序运行、日志监控)、Hadoop高级应用(YARN框架介绍、配置项与优化、CDH简介、环境搭建)、扩展(MAP 端优化,COMBINER 使用方法见,TOP K,SQOOP导出,其它虚拟机VM的快照,权限管理命令,AWK 与 SED命令)
4. 描述如下:
该阶段设计是为了让新人能够对大数据有一个相对的大概念怎么相对呢?在前置课程JAVA的学习过后能够理解程序在单机的电脑上是如何运行的。现在,大数据呢?大数据是将程序运行在大规模机器的集群中处理。大数据当然是要处理数据,所以同样,数据的存储从单机存储变为多机器大规模的集群存储。
(你问我什么是集群?好,我有一大锅饭,我一个人可以吃完,但是要很久,现在我叫大家一起吃。一个人的时候叫人,人多了呢? 是不是叫人群啊!)
那么大数据可以初略的分为: 大数据存储和大数据处理所以在这个阶段中呢,我们课程设计了大数据的标准:HADOOP大数据的运行呢并不是在咋们经常使用的WINDOWS 7或者W10上面,而是现在使用最广泛的系统:LINUX。
六、 第六阶段:大数据数据库
1. 难易程度:四颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:Hive入门(Hive简介、Hive使用场景、环境搭建、架构说明、工作机制)、Hive Shell编程(建表、查询语句、分区与分桶、索引管理和视图)、Hive高级应用(DISTINCT实现、groupby、join、sql转化原理、java编程、配置和优化)、hbase入门、Hbase SHELL编程(DDL、DML、Java操作建表、查询、压缩、过滤器)、细说Hbase模块(REGION、HREGION SERVER、HMASTER、ZOOKEEPER简介、ZOOKEEPER配置、Hbase与Zookeeper集成)、HBASE高级特性(读写流程、数据模型、模式设计读写热点、优化与配置)
4. 描述如下:
该阶段设计是为了让大家在理解大数据如何处理大规模的数据的同时。简化咋们的编写程序时间,同时提高读取速度。
怎么简化呢?在第一阶段中,如果需要进行复杂的业务关联与数据挖掘,自行编写MR程序是非常繁杂的。所以在这一阶段中我们引入了HIVE,大数据中的数据仓库。这里有一个关键字,数据仓库。我知道你要问我,所以我先说,数据仓库呢用来做数据挖掘分析的,通常是一个超大的数据中心,存储这些数据的呢,一般为ORACLE,DB2,等大型数据库,这些数据库通常用作实时的在线业务。
总之,要基于数据仓库分析数据呢速度是相对较慢的。但是方便在于只要熟悉SQL,学习起来相对简单,而HIVE呢就是这样一种工具,基于大数据的SQL查询工具,这一阶段呢还包括HBASE,它为大数据里面的数据库。纳闷了,不是学了一种叫做HIVE的数据“仓库”了么?HIVE是基于MR的所以查询起来相当慢,HBASE呢基于大数据可以做到实时的数据查询。一个主分析,另一个主查询
七、 第七阶段:实时数据采集
1. 难易程序:四颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:Flume日志采集,KAFKA入门(消息队列、应用场景、集群搭建)、KAFKA详解(分区、主题、接受者、发送者、与ZOOKEEPER集成、Shell开发、Shell调试)、KAFKA高级使用(java开发、主要配置、优化项目)、数据可视化(图形与图表介绍、CHARTS工具分类、柱状图与饼图、3D图与地图)、STORM入门(设计思想、应用场景、处理过程、集群安装)、STROM开发(STROM MVN开发、编写STORM本地程序)、STORM进阶(java开发、主要配置、优化项目)、KAFKA异步发送与批量发送时效,KAFKA全局消息有序,STORM多并发优化
4. 描述如下:
前面的阶段数据来源是基于已经存在的大规模数据集来做的,数据处理与分析过后的结果是存在一定延时的,通常处理的数据为前一天的数据。
举例场景:网站防盗链,客户账户异常,实时征信,遇到这些场景基于前一天的数据分析出来过后呢?是否太晚了。所以在本阶段中我们引入了实时的数据采集与分析。主要包括了:FLUME实时数据采集,采集的来源支持非常广泛,KAFKA数据数据接收与发送,STORM实时数据处理,数据处理秒级别
八、 第八阶段:SPARK数据分析
1. 难易程序:五颗星
2. 课时量(技术知识点+阶段项目任务+综合能力)
3. 主要技术包括:SCALA入门(数据类型、运算符、控制语句、基础函数)、SCALA进阶(数据结构、类、对象、特质、模式匹配、正则表达式)、SCALA高级使用(高阶函数、科里函数、偏函数、尾迭代、自带高阶函数等)、SPARK入门(环境搭建、基础结构、运行模式)、Spark数据集与编程模型、SPARK SQL、SPARK 进阶(DATA FRAME、DATASET、SPARK STREAMING原理、SPARK STREAMING支持源、集成KAFKA与SOCKET、编程模型)、SPARK高级编程(Spark-GraphX、Spark-Mllib机器学习)、SPARK高级应用(系统架构、主要配置和性能优化、故障与阶段恢复)、SPARK ML KMEANS算法,SCALA 隐式转化高级特性
4. 描述如下:
同样先说前面的阶段,主要是第一阶段。HADOOP呢在分析速度上基于MR的大规模数据集相对来说还是挺慢的,包括机器学习,人工智能等。而且不适合做迭代计算。SPARK呢在分析上是作为MR的替代产品,怎么替代呢? 先说他们的运行机制,HADOOP基于磁盘存储分析,而SPARK基于内存分析。我这么说你可能不懂,再形象一点,就像你要坐火车从北京到上海,MR就是绿皮火车,而SPARK是高铁或者磁悬浮。而SPARK呢是基于SCALA语言开发的,当然对SCALA支持最好,所以课程中先学习SCALA开发语言。
在科多大数据课程的设计方面,市面上的职位要求技术,基本全覆盖。而且并不是单纯的为了覆盖职位要求,而是本身课程从前到后就是一个完整的大数据项目流程,一环扣一环。
比如从历史数据的存储,分析(HADOOP,HIVE,HBASE),到实时的数据存储(FLUME,KAFKA),分析(STORM,SPARK),这些在真实的项目中都是相互依赖存在的。

⑨ 大数据培训内容,大数据要学哪些课程

java

数据结构、关系型数据库、linux系统操作

hadoop离线分析、Storm实时计算、spark内存计算

阅读全文

与大数据培训有哪些课程相关的资料

热点内容
市场营销中介包括哪些 浏览:838
为什么英德农产品卖得那么火 浏览:851
在哪些平台如何才能进行外汇交易 浏览:616
历史价格数据怎么存储比较好 浏览:380
如何决定一个交易者的行为 浏览:316
在交易猫卖号怎么改 浏览:641
代理商超市欠货款怎么办 浏览:494
刮刮卡代理点怎么做 浏览:328
如何查询养老金的信息 浏览:605
小香港黄金交易哪个平台好 浏览:733
形态学实验技术是什么 浏览:520
学习电工维修技术哪里学 浏览:495
华为手机防触摸程序哪里关掉 浏览:697
怎么加盟代理项目 浏览:798
白云旅游职业技术学校怎么样 浏览:46
实体店代理奶粉怎么做 浏览:862
vb创新产品部是做什么 浏览:847
市场主要内容是什么 浏览:72
集宁有哪些技术学校 浏览:847
华为的手机如何退出程序 浏览:444