⑴ 證券里可以做期貨嗎為什麼
如果你在證券公司做了相關的投資,那麼大家也是可以在證券公司購買期貨的,因為本身是互通的,所以大家也沒有必要感覺太焦慮。但是購買這些產品肯定也會存在一些風險性,所以大家應該提前去了解一下有關信息或者是大家直接去找一些專業的人士。
總結
所以大家不需要感覺很焦慮,而且這個時候也一定要注意安全。平時在生活當中,大家一定要多去收集一些有關的資料,如果你本身是一個投資小白,那麼大家就可以提前去市場上查看一下信息。投資本身就是有很大風險性的,雖然購買期貨的風險性不是特別的高,但是很多人還是因為購買這些產品而導致了虧損,所以大家也一定要提前做好心理准備,因此大家一定要降低自己的風險性。
⑵ 期貨可以用量化交易嗎
期貨可以使用量化交易,而且量化交易所占的比例越來越高,以基金等大資金賬戶為主。
量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。
拓展資料:
量化投資和傳統的定性投資本質上來說是相同的,二者都是基於市場非有效或弱有效的理論基礎。兩者的區別在於量化投資管理是「定性思想的量化應用」,更加強調數據。
量化交易具有以下幾個方面的特點:
1、紀律性。根據模型的運行結果進行決策,而不是憑感覺。紀律性既可以剋制人性中貪婪、恐懼和僥幸心理等弱點,也可以克服認知偏差,且可跟蹤。
2、系統性。具體表現為「三多」。
一是多層次,包括在大類資產配置、行業選擇、精選具體資產三個層次上都有模型;
二是多角度,定量投資的核心思想包括宏觀周期、市場結構、估值、成長、盈利質量、分析師盈利預測、市場情緒等多個角度;
三是多數據,即對海量數據的處理。
3、套利思想。定量投資通過全面、系統性的掃描捕捉錯誤定價、錯誤估值帶來的機會,從而發現估值窪地,並通過買入低估資產、賣出高估資產而獲利。
4、概率取勝。一是定量投資不斷從歷史數據中挖掘有望重復的規律並加以利用;二是依靠組合資產取勝,而不是單個資產取勝。
量化投資技術包括多種具體方法,在投資品種選擇、投資時機選擇、股指期貨套利、商品期貨套利、統計套利和演算法交易等領域得到廣泛應用。
量化交易一般會經過海量數據模擬測試和模擬操作等手段進行檢驗,並依據一定的風險管理演算法進行倉位和資金配置,實現風險最小化和收益最大化,但往往也會存在一定的潛在風險,具體包括:
1、歷史數據的完整性。行情數據不完整可能導致模型與行情數據不匹配。行情數據自身風格轉換,也可能導致模型失敗,如交易流動性,價格波動幅度,價格波動頻率等,而這一點是量化交易難以克服的。
2、模型設計中沒有考慮倉位和資金配置,沒有安全的風險評估和預防措施,可能導致資金、倉位和模型的不匹配,而發生爆倉現象。
3、網路中斷,硬體故障也可能對量化交易產生影響。
4、同質模型產生競爭交易現象導致的風險。
5、單一投資品種導致的不可預測風險。
為規避或減小量化交易存在的潛在風險,可採取的策略有:保證歷史數據的完整性;在線調整模型參數;在線選擇模型類型;風險在線監測和規避等。
⑶ 什麼是量化交易,未來前景如何知道的講講。
量化交易是指藉助現代統計學和數學的方法,利用計算機技術來進行交易的證券投資方式。在國外的期貨交易市場,程序化漸漸地成為主流,國內則剛剛起步。今天我們就來分析一下它的優勢和劣勢。
這個平台猶如幣圈的一個縮影,每一個人都心驚膽戰地伏在荷官的膝下,聆聽骰子撞擊的聲音,殊不知荷官才是他們中的頭號玩家。「職業投資者都知道有莊家」,張威直言。多數的量化平台可能會推出更復雜的止損策略和更出色的套利機制,但除非平台擁有足夠雄厚的資本成為游戲的莊家,否則就只有被收割的命運。
量化作為工具,或許無可厚非,但許多數字貨幣基金以「量化」為名,公開募集資金,行走在法律的邊緣。中國人民大學教授趙錫軍認為,金融行業和其他行業不同,參與金融活動,動用的是別人的錢,發生風險,別人會有損失,因此政府需要更加嚴格地監管。
量化交易一念天堂,一念地獄。小編在這里希望廣大投資者切莫遊走在法律的邊緣,以身試法,否則等待你的將是法律的制裁
⑷ 量化交易怎樣做新上市的期貨品種有什麼策略
量化交易是利用計算機技術分析海量歷史數據,通過分析數據總結出 "大概率 "盈利策略的交易方案,其最大的優勢是減少人的情緒對交易策略的影響,特別是當市場狂躁或悲觀時,量化交易可以避免很多不理性的投資決策。例如,大多數人都有追漲殺跌的傾向,與主觀交易相比,可以在一定程度上降低風險。在做量化交易時,很多人容易犯一個錯誤,就是拿過去很長一段時間的歷史數據做回測,優化參數,優化的目標是利潤最大化。這種優化參數的方法,往往在你運行實盤後,會發現,與你過去回測的結果相差很大,為什麼過去回測那麼賺錢,而一實盤就虧錢呢?
量化基金是利用數學、統計學、信息技術等量化投資方法,進行選股、擇時、對沖等一系列操作,進而獲得投資收益的一種基金。投資者在日常工作中經常會接觸到主動管理型基金。例如,主動管理型基金通過對上市公司的財務分析和實地調研,決定對一些公司進行投資。這些基金的創始人和基金經理往往有數學、計算機和其他學科的背景。對上市公司的研究主要是研究一些特定指標對股票價格的影響,建立模型,通過計算機自動下單,從市場波動中獲得超額收益。
小編針對問題做得詳細解讀,希望對大家有所幫助,如果還有什麼問題可以在評論區給我留言,大家可以多多和我評論,如果哪裡有不對的地方,大家可以多多和我互動交流,如果大家喜歡作者,大家也可以關注我哦,您的點贊是對我最大的幫助,謝謝大家了。
⑸ 量化交易的那些事!
最近一段時間,很多人覺得股票越來越難做了,板塊加速切換,市場走勢極端,一些中線趨勢良好的板塊個股完全無視基本面突然連續大幅殺跌。
有人說,這是因為量化交易成為了我們的對手盤,助漲殺跌。有些票漲六七個點,突然就摸漲停了,有些票跌六七個點,突然就奔跌停去了。手速、資金都拼不過,甚至按照這樣的趨勢,我們這些靠交易為生的散戶,有可能要被機器人幹掉。事實果真如此嗎?
今日筆者就來給大家分享一下量化基金的那些事。
量化交易到底是怎麼交易的?
交易員A兄,19至20年在國內某量化基金做交易員,基金規模最大到70億。最開始在量化交易部,後期在人工t0部。基本上交易部的東西都清楚,國內這幾家量化基金的交易模式也大同小異。
量化交易是怎麼交易的呢?大部分策略是量化對沖模型。
就是買入市場上的活躍股,然後開對應金額的期指空單對沖(IF,IC,IH都有),多頭金額和空單金額(期指有杠桿,實際佔用金額少)基本上在1:0.8到1:1區間浮動。
賺錢邏輯就是,不管大盤漲跌,因為有對沖,只要買入的票足夠強,只要能跑贏對沖指數(if,ih,ic),基金就是永遠賺錢的。
也有一些純多頭策略,就是不帶對沖,全買股票的,但是少一些。
量化交易的買入賣出,都是一攬子交易。每天要買入的票少的時候200隻,多的時候能到4、5百隻。這些票根據權重劃分金額,有的票買的多,大部分票只買一點點。一般前二十隻票,買入金額佔到總成交金額的4成左右了。
當天開盤前,策略部的演算法就會把當天的買入賣出任務做好。交易員的工作就是把當天要買的票買完(不論價格),把當天要賣的票賣完(不論價格)。考核指標就是以當天開盤價作為基準,算出平均買入成本與開盤價偏離值,以收盤價作為基準計算賣出價格偏離值,用這兩個數據算績效。
這個模式就導致,股票早上買的時候很容易打高了,因為很多公司都是這個演算法,互相一搶,股價就能推上去。但沒辦法,交易員一般10點之前就要買完票了,越往後風險越大,因為不知道誰就突然漲停了,導致買入成本暴增,是要被談話的。
賣出是這樣的,公司所有的票有一個7%止盈單,就是只要股價沖到7%,就會賣出。而且收盤統計的時候,漲幅超過7%的票是按7%的價格計算賣出成本的,假如賣早了那就賣虧了,假設我5個點賣了,沖到8個點,收盤砸綠,算收盤價的時候還是按7%算,這個對交易員很不友好。
「19年初那波行情我們當時規模不小了,有時候單票買入金額能佔到股票總成交的10%甚至更多,這時候票就很難買了,因為一買就要把價格推上去,推上去買入成本巨高,我們業績就會很差。但是沒辦法,任務一定要完成的。
印象很深刻的,19年2月1日,當時有個同事買入任務里要買 300615欣天科技800多萬,大家可以看一下這票前一天成交額,成交額太小了800很難買進去,買了一點點就封板了,然後炸板,我同事一直想等回落了慢慢買結果一直不回落,最後他直接集合競價把票頂到漲停板把剩下的買入任務買完了……」
量化策略模型:聯創股份的推升
由於「交易員A」兄從事於交易部門,選股條件那是策略部的事情並不清楚,而且這些量化公司都號稱自己有幾百上千個選股因子,每天機房電腦都在跑程序,在第二天開盤前把票選好。
不過公司的幾個模型結構是知道的。當時主要有7日模型,9日模型,13日模型,還有一個兩日模型。
這個N日模型的N就代表持股周期,表示買入後持有N日後賣出。有時候連續幾天都有同一隻票的買入任務,那麼這個票就會在持倉里躺小半個月。隨著模型時間到了之後,慢慢賣完。
演算法部都是清華高材生,學歷在那放著呢。不過再牛的策略也是人定的,再牛的量化演算法也是人選的。
模型的變化(持倉時間長短)、對沖指數風險敞口的調整,以及選股因子等,策略部一直在做優化。這些變化不是說某天突然發現不行了,然後就要改了、之前的都完全放棄了,而是說每天都有在回測市場分析賬戶表現,然後策略部們去做細微的調整。
「為什麼說這個模型的事情,今年的聯創股份這種,很明顯就是被量化模型推上去的。因為這票根本沒有什麼基本面,純垃圾股一個,pvdf那種故事聽聽就算了。」
實際上就是這票被很多家量化演算法選中了,有長周期的有短周期的,但是在前期都主要是買入為主,所以我們可以看到這票被鎖倉了,一直往上推,當然漲的好也就有散戶信了他的故事(散戶也鎖倉),然後到賣出的時候,這票往下按接不起來,因為大家模型時間都差不多到了。
今年好多票漲的快,漲幅大,但是調整的非常狠,跟量化模型同質化有很大的原因。
各位兄很感興趣的T+0
由於買入模型持倉7、9、13天不等,而且都是市場上比較活躍的票。那麼這些票躺著不動其實就是一種浪費,這些票可以甩給t0團隊去做t,用來搞額外收益。
「我之前的工作內容,說實話很無趣,自主操作的空間很少,更像是一個人形下單機器,所以在後期公司要開展t0交易的時候我果斷轉崗去了t0交易部。
當時國內幾家大的量化私募都已經有自己的交易團隊了,我司屬於介入比較晚的,老闆應該是去九坤這幾家參觀學過,也就動了搞t0團隊的想法。在成立自己T0團隊之前,公司的底倉是打包給國內幾家專業的t0公司去做的。」
t+0這邊很簡單,底倉給交易員分好,然後交易員自己拿著底倉去做日內差價,這個差價就是交易員的業績,然後公司按比例給交易員提成就是工資。
t0交易員是沒有底薪的,沒有底薪沒有五險一金沒有社保,全靠業績活。而且這個東西淘汰率相當高,當時新組建團隊,招來了四十多個新人,最後只留下來一個。最主要的是,現在基本沒有t0團隊要新人的了,沒公司願意培養新人。
關於t+0還有一個事情。
很多人做創業板新股喜歡看融券余額,覺得融券量大的票會容易漲,他們說的是要打爆空頭,第二天融券方要回補還券。
其實不是這樣的……創業板新股上市之前就已經把這些機構的券約出去了,這些券各大t0機構從券商手裡借到,當成底倉給交易員做t0交易。因為新股波動大做t0收益高,當然券息也高。但是專業的t0團隊是不可能裸空的,融券量大隻是券商把券借給t0團隊了,人家當天就已經買回了。
量化基金收益的潛規則
其實量化賽道也很擁擠,因為交易同質化很強,大家的策略大同小異,起重要因素的其實不是選股策略而是對沖盤的風險敞口。之前說了,多頭和空頭的比例是在1:0.8和1:1區間浮動的,那麼這裡面的可操作空間其實非常大。
而具體收益率,各個產品之間的差距其實很大……
「19年初那波創投工業大麻氫能源的行情大家應該都知道,到5月份我們的頭部產品收益率都干到了60%了,但是當時竟然還有一些產品是不賺錢的,真不賺錢甚至還有略虧一點的。
這個差距大的原因應該是各個產品的買入時間有差異,因為買的越早其實別的資金就在給你抬轎子(這些是我猜的沒法證實)。實際上在私募拍拍網上的明星產品收益率都還不錯,年化跑個二三十沒問題。但是,但是,但是!後面的產品根本不能看………頭部產品其實就是個廣告效應吸引投資人的…等你虧錢了,老闆開始心理按摩就行了,反正大部分客戶啥也不懂……
我們老闆就不會交易,他工作的一個主要內容就是給客戶心理按摩……
前東家規模最多到70億,當時老闆是有沖擊百億規模的想法的,擴招了很多人。實際上是這些規模一部分是公司本來賺上去的凈值,還有一大半是場外的人看公司業績漂亮高位跟投的…我知道的有一個大戶一個人就在我司放了20億,做量化對沖。
最後結果是行情沒了之後,好多後期進場的人是虧錢的,這些人虧了之後就會選擇贖回,撤資,然後規模也會迅速變小。很快的,從20億規模到70億只用了半年,從70億回到不到20億,用了不到半年……
不過老闆怎麼都是賺的,行情好的時候賺業績提成,新入場資金賺管理費……基金虧了,客戶就自己贖回好了,反正老闆都是血賺。」
最後
其實所有人(包括私募,公募,量化),對於市場都是靠蒙的……
能不能漲,為什麼漲,能漲多少,不是一個人說了算的,因為市場這么大,根本不是一個人能夠決定的。(袖珍盤庄股除外,這種就真看老莊心情………)
行情都是一陣子一陣子的,年初白酒yyds,三月碳中和yyds,5月醫美yyds,789月新能源賽道yyds,最後把鍋全甩到量化頭上去……其實還是自己學藝不精啊……
總的來說,市場的東西都交給市場去消化,市場有市場自己的規律。yyds白酒照樣能跌,賽道股照樣會大幅回撤。
老師們要認真觀察市場,認真學,認真提高自己的交易水平,其實是可以盈利的。
做量化的這些程序員大部分連股票都沒炒過,人家寫的程序也就是發現了市場規律,然後用合理的倉位,策略去做交易。連這些人都能賺錢,其實我們需要做的是客服自己的貪婪和恐懼,做一個無情的交易機器就好了。