導航:首頁 > 交易市場 > 在量化交易背景下散戶怎麼辦

在量化交易背景下散戶怎麼辦

發布時間:2023-08-17 18:40:25

1. 揭開「量化交易」的神秘面紗

量化交易( quantitative  trading  )是金融術語,即以數學模型代替人為主觀判斷,以計算機程序從還想歷史數據中篩選出多種「大概率事件」並總結出規律,從而制定相應的投資策略。有了量化交易策略,就較容易減少投資者情緒波動的影響,避免在市場狂熱或悲觀的情況下做出非理性的投資決策。

在量化交易出現之前,股票和證券市場的投資操作都是人工完成的。著名的股神巴菲特,他的故事投資秘訣就是價值投資,即通過大量研讀財報選出優質的公司,並長期持有。價值投資利潤固然高明,但知易行難,絕大多數的投資者並沒有耐心和毅力去逐一研讀每家企業的資料,分析基本面,等等。以美股為例,14000+家公司,每份財報都有好幾百頁,怎麼看得完。更何況,很多機構和投資者都是炒短線的,根本沒時間按價值投資的思路去做資料分析。

在此背景下,很多金融創新就應運而生了。比如金融學上有一個很著名的交易策略叫動量交易(momentum trading),即股票價格向上突破到某個比例時買入,下跌某比例時賣出。這個原則說起來容易,人工操作就很困難。而有了計算機之後,交易員只需要輸入具體明確的交易策略的指令,剩下的具體操作就可以由電腦自動完成了,非常輕松。

20世紀70年代,隨著計算機算力的突飛猛進,金融數據的大數據分析變得簡單易行,接著一大批劃時代的金融理論誕生了,比如投資組合理論、資產定價理論、期權定價理論,都是在這一時期出現的,這些理論為挖掘金融數據提供了理論基礎。另一方面,市場上需要管理的錢越來越多,證券的種類也越來越多。計算能力、金融理論基礎、市場需求,這三個條件在一個時代同時實現,量化交易也就應運而生了。

率先使用量化交易技術的是投資銀行們。他們利用計算機技術在海量的數據裡面挖掘信息,設計很多很復雜的金融產品,放大杠桿,獲取著令人難以置信的高額利潤。由於計算機技術的大面積應用,很多IT天才雲集華爾街,他們大都是穿著T恤和牛仔褲不修邊幅的宅男,與西裝革履的傳統銀行家形成了鮮明的對比。2006年,來自摩根史丹利,高盛,德意志銀行等投行的頂級「寬客」(Quants,量化交易專家)平均年收入是5.7億美金,年齡最小的才30歲左右。

經過投行們的推波助瀾之後,量化交易在金融市場上占據著相當大的份額。目前的美股市場上,量化交易大概佔到60%的比重。

量化交易的核心競爭力就是對海量數據進行分析計算,進而提煉出一定的規律,並據此作出預測。比如,對於某一隻農業概念股,除了常規的坎財務數據、歷史產量,還可以利用衛星數據來分析天氣,然後把農產品的歷史產量和其它先關數據全都難過來,進過整合分析之後預測這產品的未來產量,進而對該只農業股的股價進行預測。在市場平穩發展、規律性較強的情況下,只要精確地捕捉到這些規律,投入一些本金,並加上一定的杠桿,就可以實現很高比例的盈利,可謂是一本萬利,這也是前文提到很多量化交易的IT專家能夠獲取天量收入的秘訣。

這個原理聽起來確實很誘人,然而卻不是容易做到的。畢竟從海量繁雜的數據中持續捕捉規律,並作出准確預測,是非常復雜和燒腦的勞動,費一般人力所能及。因此,大多數投行都是到MIT(麻省理工學院)、普林斯頓等最牛的高校里挖最牛的人才來組建團隊。這些精英們也經常自詡,他們是用模擬天體運行規律的方式來解讀金融世界。簡言之,這是智商密集型的精英領域,非一般人可以涉足。

然而,經濟世界和金融領域的運行狀況,跟天文物理、化學生物等穩態結構領域的規律是大相徑庭的,沒有必然和連續的規律 。量化交易確實厲害,但卻非穩賺不賠的必殺神技。實際上,量化交易的風險非常大。關鍵在於,量化交易的本質是基於歷史數據挖掘規律,因此它依賴於過去的趨勢。而如果這些趨勢依存的條件發生變化,趨勢也就不復存在。進而,基於這些趨勢所做的投資策略,也就面臨著失敗的厄運。

最著名的案例就是著名的投行「所羅門兄弟」,它裡面有一個叫梅瑟維夫的天才,自己組建了著名的量化基金「長期資本管理公司」。在1998年之前,這家公司的業績非常好,年化收益達到32%,在同行之中一騎絕塵。但是經過俄羅斯盧布崩盤的黑天鵝事件之後,一切灰飛煙滅。

1998年俄羅斯盧布大幅貶值,市場上到處拋售俄羅斯債券。長期資本管理公司根據自己設定的量化模型,不但不拋售,反而激進地抄底,想著等市場反彈之後大賺一筆。然而1998年8月17日,俄羅斯政府發表聲明不再償還任何債務。盧布應聲而落,長期資本管理公司爆倉,一天就虧掉幾億美金,在一個月之後,這家天才雲集的公司就破產清盤了。

量化交易把金融市場當作穩態結構,以為一切皆有序可循。然而,金融市場不是天體世界,它歸根到底是人的市場。人性的貪婪、恐懼、慾望都會隨著市場情況的變化而變化。因此它是一個規律和任性相互作用的動態過程,沒有一成不變的規律,也沒有料事如神的預測模型。用李善友教授近兩年廣為人知的說法,叫「 不連續性 」。

當今的量化交易已經回歸到了一個正常狀態:一方面,認識到量化交易在數據挖掘和科學決策方面的優勢,但是另外一方面,人們也認識到量化交易是有局限的,尤其是應對這種突如其來的規律變化的時候,這種純量化交易可能會面臨更大的風險。

作為全球重要的金融市場之一,中國也有一定規模的量化交易的,但仍處於萌芽的發展狀態。炒過股票的同學都知道,中國股市雖然長期收益率不錯,但仍總體而言仍是「消息市」、「題材市」、「概念市」,一旦政策或者環境有點風吹草動,中國市場的變動是非常非常頻繁的,而且波動的幅度特別大。在市場起伏很大、無規律性非常明顯的情況下,量化交易策略就難以湊效,更遑論賺取暴利。

2013年中國有一個光大「烏龍指」事件,就跟量化交易有密切的關系。當時是光大證券的交易員不小心輸錯了一個數字,下了一個70億的天量買單,瞬間拉動股價大漲,進而觸發了很多量化交易程序的自動執行條件,很快導致300多億的資金湧入場內,幾分鍾之內上證指數就拉升了100多點,59支權重股瞬間漲停。很多不明就裡的散戶盲目跟進,結果損失慘重。事後很多人除了控訴光大證券,也指責採用量化交易的機構,因為量化交易數倍放大了「烏龍指」效應,明顯影響了整個股市,進而間接促成他們的跟進損失。

在2013-2014期間,有些量化交易機構收益不錯,但經過2015年股災之後,整個A股市場的情緒和資金面都發生了巨大的變化,過去行之有效的策略通通報廢,以量化交易為核心的私募基金倒掉了300多家。

因此,量化交易在中國市場的成長壯大,路漫漫其修遠兮。我們普通人,還是老老實實學巴菲特,踏踏實實研讀財報,搞價值投資吧^_^

2. 量化交易的那些事!

最近一段時間,很多人覺得股票越來越難做了,板塊加速切換,市場走勢極端,一些中線趨勢良好的板塊個股完全無視基本面突然連續大幅殺跌。

有人說,這是因為量化交易成為了我們的對手盤,助漲殺跌。有些票漲六七個點,突然就摸漲停了,有些票跌六七個點,突然就奔跌停去了。手速、資金都拼不過,甚至按照這樣的趨勢,我們這些靠交易為生的散戶,有可能要被機器人幹掉。事實果真如此嗎?

今日筆者就來給大家分享一下量化基金的那些事。

量化交易到底是怎麼交易的?

交易員A兄,19至20年在國內某量化基金做交易員,基金規模最大到70億。最開始在量化交易部,後期在人工t0部。基本上交易部的東西都清楚,國內這幾家量化基金的交易模式也大同小異。

量化交易是怎麼交易的呢?大部分策略是量化對沖模型。

就是買入市場上的活躍股,然後開對應金額的期指空單對沖(IF,IC,IH都有),多頭金額和空單金額(期指有杠桿,實際佔用金額少)基本上在1:0.8到1:1區間浮動。

賺錢邏輯就是,不管大盤漲跌,因為有對沖,只要買入的票足夠強,只要能跑贏對沖指數(if,ih,ic),基金就是永遠賺錢的。

也有一些純多頭策略,就是不帶對沖,全買股票的,但是少一些。

量化交易的買入賣出,都是一攬子交易。每天要買入的票少的時候200隻,多的時候能到4、5百隻。這些票根據權重劃分金額,有的票買的多,大部分票只買一點點。一般前二十隻票,買入金額佔到總成交金額的4成左右了。

當天開盤前,策略部的演算法就會把當天的買入賣出任務做好。交易員的工作就是把當天要買的票買完(不論價格),把當天要賣的票賣完(不論價格)。考核指標就是以當天開盤價作為基準,算出平均買入成本與開盤價偏離值,以收盤價作為基準計算賣出價格偏離值,用這兩個數據算績效。

這個模式就導致,股票早上買的時候很容易打高了,因為很多公司都是這個演算法,互相一搶,股價就能推上去。但沒辦法,交易員一般10點之前就要買完票了,越往後風險越大,因為不知道誰就突然漲停了,導致買入成本暴增,是要被談話的。

賣出是這樣的,公司所有的票有一個7%止盈單,就是只要股價沖到7%,就會賣出。而且收盤統計的時候,漲幅超過7%的票是按7%的價格計算賣出成本的,假如賣早了那就賣虧了,假設我5個點賣了,沖到8個點,收盤砸綠,算收盤價的時候還是按7%算,這個對交易員很不友好。

「19年初那波行情我們當時規模不小了,有時候單票買入金額能佔到股票總成交的10%甚至更多,這時候票就很難買了,因為一買就要把價格推上去,推上去買入成本巨高,我們業績就會很差。但是沒辦法,任務一定要完成的。

印象很深刻的,19年2月1日,當時有個同事買入任務里要買 300615欣天科技800多萬,大家可以看一下這票前一天成交額,成交額太小了800很難買進去,買了一點點就封板了,然後炸板,我同事一直想等回落了慢慢買結果一直不回落,最後他直接集合競價把票頂到漲停板把剩下的買入任務買完了……」

量化策略模型:聯創股份的推升

由於「交易員A」兄從事於交易部門,選股條件那是策略部的事情並不清楚,而且這些量化公司都號稱自己有幾百上千個選股因子,每天機房電腦都在跑程序,在第二天開盤前把票選好。

不過公司的幾個模型結構是知道的。當時主要有7日模型,9日模型,13日模型,還有一個兩日模型。

這個N日模型的N就代表持股周期,表示買入後持有N日後賣出。有時候連續幾天都有同一隻票的買入任務,那麼這個票就會在持倉里躺小半個月。隨著模型時間到了之後,慢慢賣完。

演算法部都是清華高材生,學歷在那放著呢。不過再牛的策略也是人定的,再牛的量化演算法也是人選的。

模型的變化(持倉時間長短)、對沖指數風險敞口的調整,以及選股因子等,策略部一直在做優化。這些變化不是說某天突然發現不行了,然後就要改了、之前的都完全放棄了,而是說每天都有在回測市場分析賬戶表現,然後策略部們去做細微的調整。

「為什麼說這個模型的事情,今年的聯創股份這種,很明顯就是被量化模型推上去的。因為這票根本沒有什麼基本面,純垃圾股一個,pvdf那種故事聽聽就算了。」

實際上就是這票被很多家量化演算法選中了,有長周期的有短周期的,但是在前期都主要是買入為主,所以我們可以看到這票被鎖倉了,一直往上推,當然漲的好也就有散戶信了他的故事(散戶也鎖倉),然後到賣出的時候,這票往下按接不起來,因為大家模型時間都差不多到了。

今年好多票漲的快,漲幅大,但是調整的非常狠,跟量化模型同質化有很大的原因。

各位兄很感興趣的T+0

由於買入模型持倉7、9、13天不等,而且都是市場上比較活躍的票。那麼這些票躺著不動其實就是一種浪費,這些票可以甩給t0團隊去做t,用來搞額外收益。

「我之前的工作內容,說實話很無趣,自主操作的空間很少,更像是一個人形下單機器,所以在後期公司要開展t0交易的時候我果斷轉崗去了t0交易部。

當時國內幾家大的量化私募都已經有自己的交易團隊了,我司屬於介入比較晚的,老闆應該是去九坤這幾家參觀學過,也就動了搞t0團隊的想法。在成立自己T0團隊之前,公司的底倉是打包給國內幾家專業的t0公司去做的。」

t+0這邊很簡單,底倉給交易員分好,然後交易員自己拿著底倉去做日內差價,這個差價就是交易員的業績,然後公司按比例給交易員提成就是工資。

t0交易員是沒有底薪的,沒有底薪沒有五險一金沒有社保,全靠業績活。而且這個東西淘汰率相當高,當時新組建團隊,招來了四十多個新人,最後只留下來一個。最主要的是,現在基本沒有t0團隊要新人的了,沒公司願意培養新人。

關於t+0還有一個事情。

很多人做創業板新股喜歡看融券余額,覺得融券量大的票會容易漲,他們說的是要打爆空頭,第二天融券方要回補還券。

其實不是這樣的……創業板新股上市之前就已經把這些機構的券約出去了,這些券各大t0機構從券商手裡借到,當成底倉給交易員做t0交易。因為新股波動大做t0收益高,當然券息也高。但是專業的t0團隊是不可能裸空的,融券量大隻是券商把券借給t0團隊了,人家當天就已經買回了。

量化基金收益的潛規則

其實量化賽道也很擁擠,因為交易同質化很強,大家的策略大同小異,起重要因素的其實不是選股策略而是對沖盤的風險敞口。之前說了,多頭和空頭的比例是在1:0.8和1:1區間浮動的,那麼這裡面的可操作空間其實非常大。

而具體收益率,各個產品之間的差距其實很大……

「19年初那波創投工業大麻氫能源的行情大家應該都知道,到5月份我們的頭部產品收益率都干到了60%了,但是當時竟然還有一些產品是不賺錢的,真不賺錢甚至還有略虧一點的。

這個差距大的原因應該是各個產品的買入時間有差異,因為買的越早其實別的資金就在給你抬轎子(這些是我猜的沒法證實)。實際上在私募拍拍網上的明星產品收益率都還不錯,年化跑個二三十沒問題。但是,但是,但是!後面的產品根本不能看………頭部產品其實就是個廣告效應吸引投資人的…等你虧錢了,老闆開始心理按摩就行了,反正大部分客戶啥也不懂……

我們老闆就不會交易,他工作的一個主要內容就是給客戶心理按摩……

前東家規模最多到70億,當時老闆是有沖擊百億規模的想法的,擴招了很多人。實際上是這些規模一部分是公司本來賺上去的凈值,還有一大半是場外的人看公司業績漂亮高位跟投的…我知道的有一個大戶一個人就在我司放了20億,做量化對沖。

最後結果是行情沒了之後,好多後期進場的人是虧錢的,這些人虧了之後就會選擇贖回,撤資,然後規模也會迅速變小。很快的,從20億規模到70億只用了半年,從70億回到不到20億,用了不到半年……

不過老闆怎麼都是賺的,行情好的時候賺業績提成,新入場資金賺管理費……基金虧了,客戶就自己贖回好了,反正老闆都是血賺。」

最後

其實所有人(包括私募,公募,量化),對於市場都是靠蒙的……

能不能漲,為什麼漲,能漲多少,不是一個人說了算的,因為市場這么大,根本不是一個人能夠決定的。(袖珍盤庄股除外,這種就真看老莊心情………)

行情都是一陣子一陣子的,年初白酒yyds,三月碳中和yyds,5月醫美yyds,789月新能源賽道yyds,最後把鍋全甩到量化頭上去……其實還是自己學藝不精啊……

總的來說,市場的東西都交給市場去消化,市場有市場自己的規律。yyds白酒照樣能跌,賽道股照樣會大幅回撤。

老師們要認真觀察市場,認真學,認真提高自己的交易水平,其實是可以盈利的。

做量化的這些程序員大部分連股票都沒炒過,人家寫的程序也就是發現了市場規律,然後用合理的倉位,策略去做交易。連這些人都能賺錢,其實我們需要做的是客服自己的貪婪和恐懼,做一個無情的交易機器就好了。

3. 股市量化交易的方式適不適合散戶

隨著國內投資者整體素質的提高,量化程序化交易的人越來越多,建議國內有條件的投資者轉向量化交易。

其中,程序化交易相對於股票而言,它更適合期貨。推薦它的原因有以下:

降低人性弱點,對交易行為的影響。

每個人是性格和承受能力是不一樣的。特別是主觀交易者,很容易受到情緒的影響。

當出現大虧大賺的時候,如果處理不當,很可能造成兩種極端,一種是被長時間打入冷宮,另一種是極度自信。

但是,程序化交易就不一樣,比較理性,依靠程序可以最大限度的降低人性對整個交易的影響。比如扛單,恐懼等都會影響最後的交易結果。

程序化交易語言的選擇。

想要實現程序化交易,必須要學一門語言。分為編程語言和非編程語言。

如果你是非科班,有沒有精力學。那麼可以選擇非編程量化交易語言,比如交易開拓者TB,金字塔,MT4等語言,他們的主要用途是實現你的交易邏輯,而只能在其軟體內使用該語言。

如果你是計算機科班出身,難么建議學習Python+一門非編程量化交易語言,作者推薦TB語言。

Python在量化交易,數據分析等方面用途非常廣,相對於Java,PHP等來說,入門是相對容易,記住這里說的是入門,並不意味著它簡單。

4. 散戶如何做量化交易

定量投資是標准化投資環節的交易方式,主要包括選股、購買、銷售三個環節.在量化交易過程中,散戶可以這樣做:1、根據個股的歷史數據,進行多因子選股,比如,把市盈率、市凈率、市銷率等作為選股標准,選出一些價值被低估,或者處於合理區域的個股。 2、順勢交易,即在上漲的趨勢中買入,在下跌的趨勢中賣出。

一、散戶是怎麼量化交易的?
1、根據股票的歷史數據,進行多因子股票選擇.例如,將股價收益率、股價收益率、市場收益率等作為股票選擇基準,選擇價值被低估或處於合理地區的股票.
2、順勢交易,以上升趨勢購買,以下降趨勢銷售.
3、進行合理的倉庫管理,即採用漏斗型倉庫管理法、矩形倉庫管理法、金字塔形倉庫管理法等,應對股票後期風險.
4、根據股票的歷史趨勢,尋找股票的支持位置和壓力位置,以此為止損、止損點,在壓力位置,獲得收益時立即銷售的支持位置,股票損失時立即銷售股票,避免更大的損失.

二、散戶如何做量化交易
確保管理公司所有的活動遵守法規規定,確保對付給基金管理公司的費用和付給投資者的收益計算符合法規和契約規定負責.同時,受託委員會負貴監督和核查託管人是否合法、合規、高效地進行基金資產凈值核算、報酬的計提和支付、資金的劃付,以及收益的分配等.委員會還應有權審查管理公司及託管機構高級人員個人賬戶及證券交易的詳細內容.並定期對交易、資產凈值、服務合同進行審查,定期向監管部門提交相關報告。

三、量化交易系統的出現能夠解決什麼問題?
1.減少客觀因素(情緒化交易)帶來的影響,從而達到穩定持續盈利目的。
2.有嚴格風險控制機制,可杜絕過量交易、重倉交易、大幅虧損等問題。
3 解放操盤時間,降低重復工作帶來的時間消耗,從而達到提高效率目的。

5. 量化交易對散戶的影響有哪些

量化交易,其實對散戶的影響沒有財經報道中說得那麼負面。從某種意義上,量化交易的數額越高,散戶參與股票交易的對手方也越多、市場流動性也越好。當然,量化交易對散戶的影響利弊各半,利多的一面在於我剛才說的流動性增強,利空的一面在於博弈方的水平提升。因此,散戶應當積極提升自己的研究水平,並做好風控,提升交易靈活度。在此情況下,散戶無需過分擔心量化交易的影響。

6. 量化交易是什麼意思適合散戶嗎

近些日子,一則“量化交易是什麼意思?適合散戶嗎? ”的問題,成為了一個熱門的話題,我來說下我的看法。首先,來了解一下量化交易是什麼意思。量化交易呢,就是通過計算機去進行統計一些高勝率的模型,通過這個交易模型去進行自動化的交易,實現盈利,這就是量化交易。量化交易適合散戶嗎?我認為是不適合的,量化交易需要你懂得怎麼編程,懂股市,然後才能夠去做出這么一個系統,做出這么一個穩定的模型。散戶怎麼做更好呢?散戶如果買股票,那麼就去買入龍頭股持有就行,或者是直接去購買一些基金,讓他們幫你理財操作。那麼具體的情況是什麼呢?我來給大家分享一下我的看法。

一.量化交易是什麼意思

量化交易呢,就是通過計算機去進行統計一些高勝率的模型,通過這個交易模型去進行自動化的交易,實現盈利,這就是量化交易。量化交易是一些專業的投資公司會去使用的一些方法,甚至現在還出現了自動打板的席位,非常厲害的。


大家看完,記得點贊+加關注+收藏哦。

7. 量化交易下散戶怎麼辦

所謂量化交易就是,編一套相當於交易系統的程序,由電腦程序(又稱機器人),自動完成操作。
這個交易程序涵蓋,如何選股,如何確定買賣點,並進行自動買賣的,完整過程。
選股一般用基本面選股,也有用技術形態選股的。
買賣點,一般都是短期技術上的買賣點。
人們設定好程序後,電腦程序自動運行,代替人操作。

量化交易技術在機構中已經非常普及了,確實是很靠譜的交易方法,不過散戶或是個人想使用這種交易方法的話成本很高,光是技術問題就難以解決,其實這種方法應用起來並不復雜,所以建議題主還是使用一些成熟的量化交易產品比較好,最近在使用的策略炒股就非常方便,手機上就能用,回測准確,而且推送功能非常貼心,只要選定策略就不用管了,自動推送交易信息,然後交易的時候照著做,非常方便。

在理論上看,量化交易,是有理性交易的優勢。
由於設定好「選股+買賣點」的自動買賣程序,可以讓機器自動操作。
電腦程序自動操作,克服了人們在買賣中的各種情緒,顯得比較理性。
如果量化交易程序,真的科學合理,又克服了情緒因素,將提高交易的效率,提高成功率。

閱讀全文

與在量化交易背景下散戶怎麼辦相關的資料

熱點內容
淘寶如何刪除評價後的信息 瀏覽:283
如何評估自動駕駛技術 瀏覽:754
景區要身份證哪些信息 瀏覽:757
京東小程序怎麼看直播 瀏覽:585
如何打開流量數據 瀏覽:40
單片機cpu怎麼燒程序 瀏覽:908
底妝產品有哪些bb 瀏覽:25
信息大廈在福田站哪個出口 瀏覽:429
文件如何改回未知程序 瀏覽:532
網上的交易安全性怎麼樣 瀏覽:953
疫情信息送達平均只需要多少小時 瀏覽:873
程序員學什麼專業好就業 瀏覽:976
賣稻穀在哪裡交易 瀏覽:678
版權代理包括哪些 瀏覽:191
市場上如何區分布偶貓的價格 瀏覽:280
ebank是什麼交易 瀏覽:704
怎麼找市場經理 瀏覽:81
小學信息學奧賽有什麼用 瀏覽:940
金知網代理是什麼意思 瀏覽:39
手機代理平台哪裡好 瀏覽:395