Ⅰ 量化交易是什麼意思
量化交易是指藉助現代統計學和數學的方法,利用計算機技術來進行交易的證券投資方式,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下,作出非理性的投資決策。
【拓展資料】
量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。
國外市場:
首先,從全球市場的參與主體來看,按照管理資產的規模,2018年全球排名前六位中的五家資管機構,都是依靠計算機技術來開展投資決策,而且進入2019年由量化及程序化交易所管理的資金規模進一步擴大。
其次,全球超70%的資金交易用計算機或者程序進行,其中一半是由量化或者程序化的管理人來操盤。在國外招聘網站搜索金融工程師(包括量化、數據科學等關鍵詞)會出現超過33萬個相關崗位。
第三,從高校的培養方向來看,已有超過450所美國大學設置了金融工程專業,每年相關專業畢業生達到1.5萬人,市場需求與畢業生數量的差距顯著,因此數據科學、計算機科學、會計以及相關STEM(基礎科學)學生畢業後進入金融行業從事量化分析和應用開發的相關工作。
量化交易具有以下特點:
1.紀律性
根據模型的運行結果進行決策,而不是憑感覺。紀律性既可以剋制人性中貪婪、恐懼和僥幸心理等弱點,也可以克服認知偏差,且可跟蹤。
2.系統性
具體表現為「三多」。一是多層次,包括在大類資產配置、行業選擇、精選具體資產三個層次上都有模型;二是多角度,定量投資的核心思想包括宏觀周期、市場結構、估值、成長、盈利質量、分析師盈利預測、市場情緒等多個角度;三是多數據,即對海量數據的處理。
3.套利思想
定量投資通過全面、系統性的掃描捕捉錯誤定價、錯誤估值帶來的機會,從而發現估值窪地,並通過買入低估資產、賣出高估資產而獲利。
4.概率取勝
一是定量投資不斷從歷史數據中挖掘有望重復的規律並加以利用;二是依靠組合資產取勝,而不是單個資產取勝。
Ⅱ 什麼是量化交易
量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。
拓展資料:
量化投資和傳統的定性投資本質上來說是相同的,二者都是基於市場非有效或弱有效的理論基礎。兩者的區別在於量化投資管理是「定性思想的量化應用」,更加強調數據。量化交易具有以下幾個方面的特點:
1、紀律性。根據模型的運行結果進行決策,而不是憑感覺。紀律性既可以剋制人性中貪婪、恐懼和僥幸心理等弱點,也可以克服認知偏差,且可跟蹤。
2、系統性。具體表現為「三多」。一是多層次,包括在大類資產配置、行業選擇、精選具體資產三個層次上都有模型;二是多角度,定量投資的核心思想包括宏觀周期、市場結構、估值、成長、盈利質量、分析師盈利預測、市場情緒等多個角度;三是多數據,即對海量數據的處理。
3、套利思想。定量投資通過全面、系統性的掃描捕捉錯誤定價、錯誤估值帶來的機會,從而發現估值窪地,並通過買入低估資產、賣出高估資產而獲利。
4、概率取勝。一是定量投資不斷從歷史數據中挖掘有望重復的規律並加以利用;二是依靠組合資產取勝,而不是單個資產取勝。
量化投資技術包括多種具體方法,在投資品種選擇、投資時機選擇、股指期貨套利、商品期貨套利、統計套利和演算法交易等領域得到廣泛應用。在此,以統計套利和演算法交易為例進行闡述。
1、統計套利
統計套利是利用資產價格的歷史統計規律進行的套利,是一種風險套利,其風險在於這種歷史統計規律在未來一段時間內是否繼續存在。
統計套利的主要思路是先找出相關性最好的若干對投資品種,再找出每一對投資品種的長期均衡關系(協整關系),當某一對品種的價差(協整方程的殘差)偏離到一定程度時開始建倉,買進被相對低估的品種、賣空被相對高估的品種,等價差回歸均衡後獲利了結。
股指期貨對沖是統計套利較常採用的一種操作策略,即利用不同國家、地區或行業的指數相關性,同時買入、賣出一對指數期貨進行交易。在經濟全球化條件下,各個國家、地區和行業股票指數的關聯性越來越強,從而容易導致股指系統性風險的產生,因此,對指數間的統計套利進行對沖是一種低風險、高收益的交易方式。
2、演算法交易
演算法交易又稱自動交易、黑盒交易或機器交易,是指通過設計演算法,利用計算機程序發出交易指令的方法。在交易中,程序可以決定的范圍包括交易時間的選擇、交易的價格,甚至包括最後需要成交的資產數量。
Ⅲ 量化交易是什麼意思
量化交易是一種投資方法。
以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。量化交易指使用數學模型取代人為的主觀性判斷,利用計算機技術從龐大的歷史數據中甄選能為企業帶來超額收益的大概率事件以制定有利於企業發展的策略。
從18世紀開始,金融投資的先驅已經開始探索各種不同的投資方法,經過多年的進化,已經嘗試了從價值分析、風險套利到日間交易等不同的方向。那麼,在目前不斷變化的中國資本市場,什麼投資方向迫切需要我們深入探索。筆者認為,量化投資作為中國市場的新興投資方法,正在引來越來越多的關注。
中國投資者對數量化投資,雖不陌生,卻仍懵懂。量化投資理論是藉助現代統計學和數學的方法,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,用數量模型驗證及固化這些規律和策略,然後嚴格執行已固化的策略來指導投資,以求獲得可持續的、穩定且高於平均的超額回報。量化交易主要運用數學公式來構建模型,經過大量數據來判斷將來價格走勢,並且由程序進行擇機選股的一種方式。它的選股而十分廣泛,覆蓋面達到上百隻甚至上千隻股票,並且能夠排除迫漲殺跌等人為因素,紀律性很強。
「量化交易」有著兩層含義:一是從狹義上來講,是指量化交易的內容,將交易條件轉變成為程序,自動下單;二是從廣義上來講,是指系統交易方法,就是一個整合的交易系統。即為根據一系列交易條件,智能化輔助決策體系,將豐富的從業經驗與交易條件相結合,在交易過程管理好風險控制。
量化交易至少應該包括五個方面的要素:
(1)買入和賣出的信號系統。
(2)牛市還是熊市的方向指引,比如用200天移動平均線分辨熊市中系統風險的規避。
(3)頭寸管理以及資金管理。
(4)風險控制,運用信號源來確定止損位置,利用資產曲線和權益曲線來加以判定和管理。
(5)投資組合,不一樣的投資品種、不相同的交易系統(不同功能和參數,有快有慢)以及不相同時間周期組合,現分散組合,讓交易賬戶波動更加穩定。
Ⅳ 什麼是量化交易
一、什麼是量化交易
量化交易即使用現代統計學和數學工具,藉助計算機建立數量模型,制定策略,嚴格按照既定策略交易。具體又可分為高頻交易和非高頻交易,其中非高頻交易適合一般個人投資者和中小機構。
量化交易是以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額預期年化預期收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。
二、量化交易的優點
1、投資業績穩定。
因為量化交易業績所依靠的通常是由很多次的大概率事件產生的利潤積累起來的,達到它的要求才能夠進場。經過多個步驟,層層把關,從而極大地提高成功率。盡管它並不能保證你每一次都能夠賺錢,但它能夠它靠概率取勝。
這主要表現在兩個方面:
量化交易從歷史數據中不斷地挖掘有望在未來重復的規律並進行利用。
依靠一組股票來獲勝,而不是一個或者幾個股票獲勝。從投資組合理念來看就是捕捉大概率獲勝的股票,而不是押到單個股票上。
2、能夠理性投資。
在容易失去理性的情況之下幫助你保持理性,因而在市場反應過度、喪失理性的時候能夠及時把握住時機。
3、信息的處理能力強。
個人交易證券市場,對市場各種信息必然會感到十分茫然,而量化交易對信息的處理能力更強。當我們而對證券市場時,感覺它就如同大海似的,在茫茫的大海之中,要想持續地獲取回報,就需要一個指引。而這個指引就是我們的交易模型,就像是茫茫證券市場航行時的羅盤。
Ⅳ 什麼是量化交易,最簡單的理解
通俗來講,量化交易就是讓計算理智地幫你做出交易方法,你只需要照著執行交易。
量化交易有什麼好處?
定量投資和傳統的定性投資本質上來說是相同的,二者都是基於市場非有效或弱有效的理論基礎。兩者的區別在於定量投資管理是"定性思想的量化應用",更加強調數據。量化交易具有以下幾個方面的特點:
1、紀律性。根據模型的運行結果進行決策,而不是憑感覺。紀律性既可以剋制人性中貪婪、恐懼和僥幸心理等弱點,也可以克服認知偏差,且可跟蹤。
2、系統性。具體表現為"三多"。一是多層次,包括在大類資產配置、行業選擇、精選具體資產三個層次上都有模型;二是多角度,定量投資的核心思想包括宏觀周期、市場結構、估值、成長、盈利質量、分析師盈利預測、市場情緒等多個角度;三是多數據,即對海量數據的處理。
3、套利思想。定量投資通過全面、系統性地掃描捕捉錯誤定價、錯誤估值帶來的機會,從而發現估值窪地,並通過買入低估資產、賣出高估資產而獲利。
4、概率取勝。一是定量投資不斷從歷史數據中挖掘有望重復的規律並加以利用;二是依靠組合資產取勝,而不是單個資產取勝。
拓展資料:量化交易的風險
量化交易一般會經過海量數據模擬測試和模擬操作等手段進行檢驗,並依據一定的風險管理演算法進行倉位和資金配置,實現風險最小化和收益最大化,但往往也會存在一定的潛在風險,具體包括:
1、歷史數據的完整性。行情數據不完整可能導致模型與行情數據不匹配。行情數據自身風格轉換,也可能導致模型失敗,如交易流動性,價格波動幅度,價格波動頻率等,而這一點是目前量化交易難以克服的。
2、模型設計中沒有考慮倉位和資金配置,沒有安全的風險評估和預防措施,可能導致資金、倉位和模型的不匹配,而發生爆倉現象。
3、網路中斷,硬體故障也可能對量化交易產生影響。
4、同質模型產生競爭交易現象導致的風險。
5、單一投資品種導致的不可預測風險。
為規避或減小量化交易存在的潛在風險,可採取的策略有:保證歷史數據的完整性;在線調整模型參數;在線選擇模型類型;風險在線監測和規避等。