導航:首頁 > 信息技術 > 量化技術有哪些

量化技術有哪些

發布時間:2022-05-08 12:48:01

Ⅰ 什麼是風險量化風險量化的方法有哪些

風險量化(Risk Quantification) 風險量化是指通過不同的風險相互作用的估算來評價項目可能結果的范圍。 風險量化的基本內容是確定哪些實踐需要制定應對措施。風險量化涉及到對不同的風險之間相互作用的評估,用這個評估分析項目可能的輸出,這樣首先就需要決定哪些風險值得反應。
應答時間:2021-02-04,最新業務變化請以平安銀行官網公布為准。
[平安銀行我知道]想要知道更多?快來看「平安銀行我知道」吧~
https://b.pingan.com.cn/paim/iknow/index.html

Ⅱ 量化交易都有哪些

你好,量化交易有很多種,比如基本面的量化技術面的量化,還有陶粒的量化,對沖的量化等等
量化交易就是把完整的交易系統寫編程程序計算機去執行,這樣的話,可以減少人為的心理波動和人為的沖動,下單造成沒必要的損失

Ⅲ 量化交易策略有哪些

一、交易策略
一個完整的交易策略一般包括交易標的的選擇,進出場時機的選擇,倉位和資金管理等幾個方面。
按照人的主觀決斷和計算機演算法執行在策略各方面的決策中的參與程度的不同,可以將交易策略分為主觀策略和量化策略。

二、主觀策略
主觀策略主要依靠投資者的主觀判斷。
期貨市場的投資者通過對產業上中下游、供需、宏觀經濟預期等的調查做出自己的判斷。
類似的,股票市場的主觀投資者通過深入研究行業的各個方面,調查行業內的上市公司,形成交易決策。
另外,無論是股票市場還是期貨市場,大量的主觀投資者是依賴技術分析做出決策的。

三、量化策略
量化策略主要依賴於計算機演算法進行交易。
投資者將初步的交易邏輯輸入計算機,並運用大量的歷史數據做統計和回測,在此基礎上做出適當的修改、揚棄,以形成可接受的交易策略。策略在形成後,往往各個決策條件就已經確定,實盤中按照既定的程序執行。
對比而言,部分主觀策略在對單個標的的研究深度上有優勢,可以通過深度研究提供專家級的意見。而量化策略由於運用計算機決策,可以處理大量的數據,因此在廣度上有優勢。另外,量化策略在執行中不會受人的狀態、情緒等不確定性的影響,因而執行更為嚴格和精確。

四、常見策略
常見的量化交易策略可以大致分為趨勢策略和市場中性策略,趨勢策略常見的有雙均線策略、布林帶策略、海歸交易法和多因子選股策略等。
常見的市場中性策略包括統計套利策略、Alpha對沖策略等,著名的網格交易法更多的是一種交易方法,可以用在不同類型的策略中。
下面我們對這幾個常見策略做一個簡單介紹,想深入了解某個策略的讀者可以藉助互聯網獲得更多資料。
(1) 雙均線策略
雙均線策略在趨勢交易中有廣泛的應用。該策略根據長短兩根不同周期的移動平均線的金叉和死叉來交易。在短周期均線上穿長周期均線(金叉)時做多,在短周期均線下穿長周期均線(死叉)時做空。雙均線系統可以進一步擴充為多均線系統。
(2) 布林帶策略
布林帶由三條線構成,其中的中線是一根移動平均線,上線是由中線加上n倍(如2倍)標准差構成,下線是中線減n倍標准差。當行情上穿上線時做多,下穿下線時做空。
(3) 海歸交易法
海歸交易法由商品投機家理查德·丹尼斯的推廣而聞名。該法則涵蓋交易的進出場,資金和倉位管理的各各方面,是一套完整的交易系統。關於該策略的具體交易模式幾個字不容易說清楚,詳細的了解大家可以參考《海歸交易法則》這本書,特別是後面的附錄。
(4) 多因子選股
多因子選股模型是股票交易中常見的策略。建立過程包括選取候選因子,在歷史數據檢驗的基礎上挑選有效因子並剔除冗餘因子等幾個過程,最後是根據因子選擇要交易的股票,確定出入場時機。
(5) 統計套利
統計套利可以用於期貨市場的跨品種和跨期套利,也可以用於相關性高的股票之間的價差套利。它是利用相關性高的標的之間的價差或者價比回歸的性質,在價差或價比偏離均衡位置時進場,在價差或價比回到均衡位置時出場。
(6) Alpha對沖策略
Alpha對沖策略同時持有方向相反的兩種頭寸對沖Beta風險。在國內市場常見的是持有股票多頭的同時,持有股指期貨空頭,該策略是否能夠獲得超額收益依賴於選取的股票是否具有高的Alpha正值。
(7) 網格交易法
網格交易法的核心是網格間距和中軸線的確定。我們以螺紋鋼期貨合約為例說明,目前螺紋價格3000,我們建立初始倉位,比如50%倉位。隨後螺紋鋼每漲50點賣出10%,每跌50點買入10%。這里的3000就是中軸,50點是網格寬度。該策略的收益波動很大

Ⅳ 如果從零基礎開始學量化投資,需要學哪些

學習量化投資和大數據分析,首先你得具備一定的數學基礎、統計學基礎,經濟學基礎以及物理較好一定的編程能力(最好是學python,入門快,效率高),如果這些基礎你都不具備,沒關系,說好的零基礎入門,那就跟著我一步一步的走。

一. 數學

打好數學基礎,學一學集合論、統計學方面的知識,集合論和統計學如果沒學過建議先入個門。下面有幾本書,個人覺得講的十分的透徹,下面就分享給大家。

《概率論與數理統計》

CSDN下載鏈接:https://download.csdn.net/download/sinat_31397599/10596845

網路雲鏈接:https://pan..com/s/10G95rPCE6kdwi8dSkG8xng

《數理統計學教程》

CSDN下載鏈接:https://download.csdn.net/download/sinat_31397599/10596851

網路雲鏈接:https://pan..com/s/13ShF4T9zgaPUbdP5hOfpsg

二. 經濟學&金融學

數學基礎學習完成後,就要進行進一步的學習了,接下來那就看一點計量經濟學和中級微觀經濟學方面的書,下面我給大家推薦幾本我認為比較好懂且幹活很多的書,以下這三本正好是講的不同的三個知識模塊,也是後面一定要用上的,請各位接好武功秘籍了。

《計量經濟學導論》

中文版CSDN下載鏈接:https://download.csdn.net/download/sinat_31397599/10596855

中文版網路雲鏈接:https://pan..com/s/1lcWY-CWanCEV05arliSneA

《微觀經濟學》

中文版CSDN下載鏈接:https://download.csdn.net/download/sinat_31397599/10596861

中文版網路雲鏈接:https://pan..com/s/1haYo2z2AUQ2KDRy1ims1Uw

《期權,期貨和其他衍生品》

中文版CSDN下載鏈接:https://download.csdn.net/download/sinat_31397599/10596863

中文版網路雲鏈接:https://pan..com/s/1cr_31mgJCYIRW8oToRpjSA

三. 計算機與編程

1. 計算機

你如果之前沒有學過計算機相關知識,我建議可以先看一本書入個門,因為學懂了以上兩方面的理論進行實踐操作了,正所謂是實踐出真知嘛!

要實踐的話就必須掌握一門編程技術,我推薦使用python語言,簡單好上手,並且各種豐富的資源庫讓你事半功倍。

《零起點Python大數據與量化交易》

CSDN下載鏈接:https://download.csdn.net/download/sinat_31397599/10596866

網路雲鏈接:https://pan..com/s/1YQ9e_fkkqF27z9jxG83tfQ

四. 實踐

現在有一些在線的金融系統,可以給你機會讓你寫你自己的模型的,你多留意一下,閑來沒事兒寫幾個交易模型試一試。
據我所知目前大多數寫交易模型的,都沒有較強的綜合能力(綜合經濟金融、數學、編程這三個方面),你要想比他們都強,那就把這三個方面的基礎都打好。

最後,加油奮斗吧,相信自己,只要你努力,你肯定是最棒的。

引用自《

小判官教你零基礎入門量化投資,大數據分析,內含對應資料下載地址。

》,鏈接為網頁鏈接

Ⅳ 股票量化策略有哪些

股票的量化策略可多了,基本的技術指標都可以量化成交易策略,比較常用的人技術指標就有幾百種,在相互組合,如果要在結合財務指標,如果再結合其他類型的人指標,那麼可組成的量化策略就太多了,可以說是無窮無盡的。

Ⅵ 什麼是量化投資有哪些常見的量化投資策略

量化投資是在投資過程中運用數學、統計學、信息技術等知識。投資者會收集股票的數據,然後依靠計算機系統強大的信息處理能力,用先進的數學模型代替人工的主觀判斷,從而在控制風險的前提下實現最大回報。

量化投資流行的原因,甚至帶有主觀的投資趨勢,這必然具有量化投資的優勢。總而言之,有以下幾點:它基於數理統計,更接近一門科學,讓未來更容易預測和感知,可以全年實時監控所有市場和交易,而人類不能。它避免了人的情感,完全由機器自動化,嚴格執行紀律。過程和風險更加可控。這些優勢逐漸將量化投資帶入我們的視野,並被越來越多的投資者所接受。

Ⅶ 量化是什麼

量化分析就是將一些不具體,模糊的因素用具體的數據來表示,從而達到分析比較的目的。

量化分析可以幫助我們更加方便和直觀地衡量風險和收益,但需要強調指出的是,美國華爾街頂級量化金融大師、哥倫比亞大學著名教授伊曼紐爾·德曼,在《數學建模如何誘騙了華爾街》一文中,毫無忌諱地承認:我們根本不可能(通過數理分析方法)發明出一個能夠預測股票價格將會如何變化的模型;如果我們相信人類行為可完全遵守數學法則,從而把有著諸多限制的模型與理論相混淆的話,其結果肯定會是一場災難。

(7)量化技術有哪些擴展閱讀:

量化投資技術幾乎覆蓋了投資的全過程,包括量化選股、量化擇時、股指期貨套利、商品期貨套利、統計套利、演算法交易,資產配置,風險控制等。

量化分析法將對通過定性風險分析排出優先順序的風險進行量化分析。盡管有經驗的風險經理有時在風險識別之後直接進行定量分析,但定量風險分析一般在定性風險分析之後進行。定量風險分析一般應當在確定風險應對計劃時再次進行,以確定項目總風險是否已經減少到滿意。

Ⅷ 量化交易有什麼類型

閃牛分析:
概念
量化交易是指以先進的數學模型替代人為的主觀判斷,利用計算機技術從龐大的歷史數據中海選能帶來超額收益的多種「大概率」事件以制定策略,極大地減少了投資者情緒波動的影響,避免在市場極度狂熱或悲觀的情況下作出非理性的投資決策。

特點
定量投資和傳統的定性投資本質上來說是相同的,二者都是基於市場非有效或弱有效的理論基礎。兩者的區別在於定量投資管理是「定性思想的量化應用」,更加強調數據。量化交易具有以下幾個方面的特點:
1、紀律性。根據模型的運行結果進行決策,而不是憑感覺。紀律性既可以剋制人性中貪婪、恐懼和僥幸心理等弱點,也可以克服認知偏差,且可跟蹤。
2、系統性。具體表現為「三多」。一是多層次,包括在大類資產配置、行業選擇、精選具體資產三個層次上都有模型;二是多角度,定量投資的核心思想包括宏觀周期、市場結構、估值、成長、盈利質量、分析師盈利預測、市場情緒等多個角度;三是多數據,即對海量數據的處理。
3、套利思想。定量投資通過全面、系統性的掃描捕捉錯誤定價、錯誤估值帶來的機會,從而發現估值窪地,並通過買入低估資產、賣出高估資產而獲利。
4、概率取勝。一是定量投資不斷從歷史數據中挖掘有望重復的規律並加以利用;二是依靠組合資產取勝,而不是單個資產取勝。
應用編輯
量化投資技術包括多種具體方法,在投資品種選擇、投資時機選擇、股指期貨套利、商品期貨套利、統計套利和演算法交易等領域得到廣泛應用。在此,以統計套利和演算法交易為例進行闡述。
1、統計套利
統計套利是利用資產價格的歷史統計規律進行的套利,是一種風險套利,其風險在於這種歷史統計規律在未來一段時間內是否繼續存在。
統計套利的主要思路是先找出相關性最好的若干對投資品種,再找出每一對投資品種的長期均衡關系(協整關系),當某一對品種的價差(協整方程的殘差)偏離到一定程度時開始建倉,買進被相對低估的品種、賣空被相對高估的品種,等價差回歸均衡後獲利了結。股指期貨對沖是統計套利較長採用的一種操作策略,即利用不同國家、地區或行業的指數相關性,同時買入、賣出一對指數期貨進行交易。在經濟全球化條件下,各個國家、地區和行業股票指數的關聯性越來越強,從而容易導致股指系統性風險的產生,因此,對指數間的統計套利進行對沖是一種低風險、高收益的交易方式。
2、演算法交易。
演算法交易又稱自動交易、黑盒交易或機器交易,是指通過設計演算法,利用計算機程序發出交易指令的方法。在交易中,程序可以決定的范圍包括交易時間的選擇、交易的價格,甚至包括最後需要成交的資產數量。
演算法交易的主要類型有: (1) 被動型演算法交易,也稱結構型演算法交易。該交易演算法除利用歷史數據估計交易模型的關鍵參數外,不會根據市場的狀況主動選擇交易時機和交易的數量,而是按照一個既定的交易方針進行交易。該策略的的核心是減少滑價(目標價與實際成交均價的差)。被動型演算法交易最成熟,使用也最為廣泛,如在國際市場上使用最多的成交加權平均價格(VWAP)、時間加權平均價格(TWAP)等都屬於被動型演算法交易。 (2) 主動型演算法交易,也稱機會型演算法交易。這類交易演算法根據市場的狀況作出實時的決策,判斷是否交易、交易的數量、交易的價格等。主動型交易演算法除了努力減少滑價以外,把關注的重點逐漸轉向了價格趨勢預測上。 (3) 綜合型演算法交易,該交易是前兩者的結合。這類演算法常見的方式是先把交易指令拆開,分布到若干個時間段內,每個時間段內具體如何交易由主動型交易演算法進行判斷。兩者結合可達到單純一種演算法無法達到的效果。
演算法交易的交易策略有三:一是降低交易費用。大單指令通常被拆分為若干個小單指令漸次進入市場。這個策略的成功程度可以通過比較同一時期的平均購買價格與成交量加權平均價來衡量。二是套利。典型的套利策略通常包含三四個金融資產,如根據外匯市場利率平價理論,國內債券的價格、以外幣標價的債券價格、匯率現貨及匯率遠期合約價格之間將產生一定的關聯,如果市場價格與該理論隱含的價格偏差較大,且超過其交易成本,則可以用四筆交易來確保無風險利潤。股指期貨的期限套利也可以用演算法交易來完成。三是做市。做市包括在當前市場價格之上掛一個限價賣單或在當前價格之下掛一個限價買單,以便從買賣差價中獲利。此外,還有更復雜的策略,如「基準點「演算法被交易員用來模擬指數收益,而」嗅探器「演算法被用來發現最動盪或最不穩定的市場。任何類型的模式識別或者預測模型都能用來啟動演算法交易。

潛在風險
量化交易一般會經過海量數據模擬測試和模擬操作等手段進行檢驗,並依據一定的風險管理演算法進行倉位和資金配置,實現風險最小化和收益最大化,但往往也會存在一定的潛在風險,具體包括:
1、歷史數據的完整性。行情數據不完整可能導致模型與行情數據不匹配。行情數據自身風格轉換,也可能導致模型失敗,如交易流動性,價格波動幅度,價格波動頻率等,而這一點是目前量化交易難以克服的。
2、模型設計中沒有考慮倉位和資金配置,沒有安全的風險評估和預防措施,可能導致資金、倉位和模型的不匹配,而發生爆倉現象。
3、網路中斷,硬體故障也可能對量化交易產生影響。
4、同質模型產生競爭交易現象導致的風險。
5、單一投資品種導致的不可預測風險。
為規避或減小量化交易存在的潛在風險,可採取的策略有:保證歷史數據的完整性;在線調整模型參數;在線選擇模型類型;風險在線監測和規避等。

Ⅸ 量化交易都有哪些主要的策略模型

國內的量化策略可以簡單分為三個類型,Alpha策略,CTA策略以及高頻交易策略。

1.Alpha策略
Alpha策略包含不同類別:

按照研究內容來分,可分為基本面Alpha(或者叫財務Alpha)和量價Alpha。業內普遍不會將這兩種Alpha完全隔離開。但是不同團隊會按照其能力、擅長方向以及信仰,在做因子上有所偏向。有的團隊喜歡用數據挖掘的方式做量價因子,而有的團隊喜歡從基本面財務邏輯的角度出發,精細地篩選財務因子。

按照是否對沖可以分為兩類。全對沖的叫做Alpha策略,不對沖的在市面上常被稱作指數增強策略。二者所用模型一樣,但後者少了期貨的對沖。缺少對沖有壞處也有好處,壞處是這種策略的收益曲線是會有較大的回撤。但好處方面,在大漲的年份,這種策略的表現會特別好;從長期看, 公司可以賺取BETA分紅收益, 並且可以吸引看好指數的客戶。相比之下而對沖Alpha策略一般在大牛市中會遠遠跑輸指數;此外不對沖的好處是節約資金,對沖的Alpha策略至少要放20~30%的資金在期貨端用來做保證金。

2.CTA策略
關於CTA策略,我是在2010年開始做CTA策略的。CTA改進到天字一號量化是我的轉折點,多品種組合,單次買進控制低風險度,1%~3%的風險度,實踐中明白了如何提高盈虧比。現在我的一個實盤賬戶資金,7年盈利5.68倍,他適合多品種,多種風險度,日線,小時線,15分鍾線都能夠支持。

3.高頻交易策略
第三類策略就是高頻交易策略,高頻交易在國內的主要應用有以下幾類,期貨趨勢、期貨套利、期權等做高頻交易的基本上都是私募,但高頻交易的產品基本上不會對外募集或者極少對外募集。高頻交易有收益高回撤小的優點,但是做高頻的軟硬體投入也都昂貴(比如一台伺服器的花費在8-10萬左右) 。更高頻的是千分之一秒以上的,一套機器幾百萬元,這種是單次盈利小,見利就收,累積起來也有不錯的收益。這種適合大資金,高學歷,高投入團隊來做。

Ⅹ 量化分析方法有幾種

量化分析法是對通過定性風險分析排出優先順序的風險進行量化分析。盡管有經驗的風險經理有時在風險識別之後直接進行定量分析,但定量風險分析一般在定性風險分析之後進行。定量風險分析一般應當在確定風險應對計劃時再次進行,以確定項目總風險是否已經減少到滿意。重復進行定量風險分析反映出來的趨勢可以指出需要增加還是減少風險管理措施,它是風險應對計劃的一項依據,並作為風險監測和控制的組成部分。
(一)技術分析法

技術分析法的主要目標是通過對市場的歷史數據的研究,特別是對價格和交易量的研究,來預測價格的變動方向。技術分析法通常分析市場價格圖標,因此技術分析師被稱為「圖表分析專家」。目的在於識別價格模式和市場趨勢,從而試圖預測未來的變化趨勢。技術分析法的原理包括市場行為包容一切信息(技術分析法旨在弄明白投資者對於此類信息的反應),價格以趨勢方式演變,歷史價格趨於重演,並且投資者具有重蹈先前投資者覆轍的特徵。

(二)基本面分析法

基本面分析法重點分析經濟狀態、利率、通貨膨脹、公司收益、公司資產負債表、以及中央銀行和政府的相關政策。

當基本面分析法應用於選股時,通常會結合對經濟整體方向自上而下的分析(宏觀),從而形成對於市場、行業、利率水平以及匯率水平的觀點,並加之運用自下而上的方法對於某隻股票進行分析(微觀)。自下而上的分析往往會忽略在國別以及產業方面的整體配置而關注於單只股票的選擇。根據投資理念和投資過程,自上而下的分析決定了國別和行業的配置;同時,自下而上的分析則決定了某一國家和行業內部的投資配置。

(三)量化分析法

量化(定量)分析法,正如其名,包括運用量化方法、統計模型、數學公式以及演算法來預測市場走向。在戰術型資產配置中一個常見的方法便是使用多因子模型,通過分析估值、動量指標、風險水平、市場情緒、利率、收益率曲線等因素,從而推導出涵蓋股票、債券和外匯市場等不同市場的買入和賣出信號。雖然有一部分戰術型資產配置策略完全是量化模型驅動的,但將量化分析和基本面分析相結合將更具活力,因為這種結合可以將量化信號融合入基本面分析的過程中。

量化分析的不足在於該分析很大程度上是以觀測到的市場價格的歷史關聯性和走勢為基礎。如果上述關聯性和走勢由於市場反轉或市場承壓而引起歷史關聯性發生變化而失效,那麼量化模型可能會在預測拐點過程中失效。量化模型往往也會在出現政權更替或市場結構化改變時失效。

閱讀全文

與量化技術有哪些相關的資料

熱點內容
代理記賬怎麼給費用 瀏覽:102
代理記賬費記到哪個科目 瀏覽:115
餅狀圖數據如何變成百分比 瀏覽:963
代理合同指什麼 瀏覽:783
軍工項目java用到哪些技術 瀏覽:973
和平精英怎麼才能把技術提升 瀏覽:684
從十字架中能獲得哪些信息 瀏覽:688
十二夏天代理怎麼加入 瀏覽:515
蘋果游泳數據哪裡看 瀏覽:925
沒有技術怎麼調整 瀏覽:378
地里大批農產品怎麼賣 瀏覽:973
代理怎麼打廣告 瀏覽:111
食鹽放開後怎麼做代理 瀏覽:183
兩條數據同一欄位怎麼拼接起來 瀏覽:144
租房中介代理怎麼做 瀏覽:368
臨沂文體市場在哪個區 瀏覽:815
a4l刷程序要多少錢 瀏覽:9
德陽應用技術學院在什麼地方 瀏覽:294
二類化工產品有哪些 瀏覽:201
會什麼技術才能開發微信小程序 瀏覽:39