導航:首頁 > 信息技術 > 5G的關鍵技術有哪些

5G的關鍵技術有哪些

發布時間:2022-05-06 17:36:30

① 5g 物理層採用的關鍵技術有哪些

超密集異構網路部署
為應對未來持續增長的數據業務需求,密集異構網路部署將會成為當前無線通信發展所面臨挑戰的一種解決方案。

D2D通信
D2D通信作為5G關鍵技術之一,對蜂窩通信起到必不可少的支撐和補充作用,能夠實現大幅度的無線數據流量增長、降低功耗、增強實時性和可靠性。D2D通信是一種短距離通信,能夠實現數據在終端間的直接傳輸。

大規模MIMO
MIMO(multipleinputmultipleoutput)系統,即發送端和接收端均放置多個天線,形成MIMO通信鏈路。通過添加多個天線,可以為無線信道帶來更大的自由度,以容納更多的信息數據。

② 5g無線網路關鍵技術有哪些

摘要 前傳和回傳

③ 大規模天線、超密集組網、高頻段通信、波束成形這四個哪個屬於5G核心關鍵技術

咨詢記錄 · 回答於2021-08-05

④ 中國掌握了哪些5G關鍵技術

華為的G技術。去年底,以華為為核心代表、由中國主導推動的PolarCode碼被GPP採納為

⑤ 5G天線有哪些技術參數

5G重點和網路射頻部分簡介

1、基站和終端

5G網路是一個密集分布基站網路,基站分布密度比前幾代移動系統都高。

其中,基站移動終端之間採用28Ghz的毫米波頻段通訊。基站天線系統採用相控陣天線體制。波束在垂直和水平兩個方向交叉極化,以實現更高的用戶密度和增加系統用戶容量。
5G終端具備自選基站能力,可以根據基站誤碼率挑選誤碼率低的基站和信道通訊。

實現以上這些功能,依賴陣列天線技術,基站和終端都用到了毫米波相控陣天線。終端中天線陣列為nXn點陣;

2、回顧下終端中天線技術

手機中布滿了天線,從GPS、藍牙、wifi、2G、3G、4G等頻段。頻率越低,尺寸越大。毫米波,顧名思義,其波長尺度在10mm內了,照波長四分之一計算,約2.5mm的點陣,就是組成有規則間距的陣列。

4G的天線一般布置在手機上下端部和側面,採用了LDS(立體電路的一種製造工藝,激光在3D曲麵塑膠上選擇性沉積金屬工藝)和FPC(柔性線路板)配合側面金屬邊框來實現終端天線功能:

金屬機身手機中,外露的中框一段金屬與手機內FPC組成了天線:

2017年玻璃機身手機開始流行,這類手機擬用到的工藝和材質依然是FPC和LDS工藝,也有把天線製造在玻璃殼體和玻璃支架上的:

0.1-0.2mm厚度3D的玻璃支架上製造邊框觸摸和天線

3、5G的手機天線特點及其工藝

(1)5G終端天線,對周邊金屬很敏感,

由於毫米波之波長很短,來自金屬的干擾是非常厲害的,印刷線路板(即PCB板),需要其與有金屬的物體之間需要保持1.5mm的凈空。

(2)5G天線是垂直與水平天線交互的點陣

這種垂直和水平交互的天線,對應垂直和水平兩個極化方向的信號收發。

(3)5G天線對安裝位置有特殊要求

由於5G終端天線是相控陣體系,其天線單元需要合成形成聚焦波束,因此需要規則的位置進行擺放,天線不能被金屬遮擋,適合3D空間掃描,規則的空間。

5G終端,被人手和人體遮擋,其信號都會開始尋找最優誤碼率頻段,形象的說,手機像一個長了眼睛的小寵物,一旦遮擋他,他即刻眼球四處轉動尋找最優信道。我們把5G手機這一動作叫手機尋優,因此,設計終端時候,安裝天線位置一開始就要合適,使其好尋優。目前手機終端中,最適合5G天線位置是兩端,尤其是上端部(聽筒位置附近),其他4G內天線都要給其讓路,也就是說有優選位置權,其他天線移到他處。

⑥ 5G關鍵技術到底有哪些

非正交多址接入技術(Non-Orthogonal Multiple Access,NOMA):
我們知道3G採用直接序列碼分多址(Direct Sequence CDMA ,DS-CDMA)技術,手機接收端使用Rake接收器,由於其非正交特性,就得使用快速功率控制(Fast transmission power control ,TPC)來解決手機和小區之間的遠-近問題;而4G網路則採用正交頻分多址(OFDM)技術,OFDM不但可以克服多徑干擾問題,而且和MIMO技術配合,極大的提高了數據速率。由於多用戶正交,手機和小區之間就不存在遠-近問題,快速功率控制就被舍棄,而採用AMC(自適應編碼)的方法來實現鏈路自適應;NOMA希望實現的是,重拾3G時代的非正交多用戶復用原理,並將之融合於現在的4G OFDM技術之中。從2G,3G到4G,多用戶復用技術無非就是在時域、頻域、碼域上做文章,而NOMA在OFDM的基礎上增加了一個維度——功率域;新增這個功率域的目的是,利用每個用戶不同的路徑損耗來實現多用戶復用。

⑦ 5G關鍵技術剖析 NB-LTE與NB-CIoT誰更勝一籌

前3GPP所提出之NB-IoT也包含各項不同的技術,目前主要可分為兩個方向,一為由諾基亞(Nokia)、愛利信(Ericsson)和英特爾(Intel)等陣營支持的NB -LTE(Narrowband-LTE)以及華為和Vodafone支持的NB-CIoT(Narrowband-Cellular IoT),兩種技術對於營運商最大的差別在於其可以在現有的LTE環境中,有多少可以重新使用於物聯網的應用中。
現今無線通訊發展飛快,全球無線通訊,發展得如火如荼,人們對於行動通訊、影音傳輸或終端應用的需求日與俱增,所到之處網路無所不在,因此即便4G還再持續擴展布建時, 5G的世代也宣告即將到來,當中所含的商機更是無限。

為了迎接這龐大的通訊藍海,各國無不積極地要搶先一步佔得先機,紛紛投入許多資源及研究,對於下一代5G通訊進行規劃和開發,想掌握其中的關鍵技術及專利,以提高被第三代合作夥伴計劃(3rd Generation Partnership Project, 3GPP)標准採納的機會,俾助國內通訊相關產業未來的發展。

5G通訊性能大耀進

在產業發展迅速的情況下,用戶端的各樣應用也隨之增加,在面對全球用戶對於數據傳輸與網路容量需求越來越高的狀況下,5G網路便因應而生,3GPP的5G相關的標准技術預計將在2016定案,在2020年預估相關產品將可步入商用階段。在其未來發展,不僅需要大的傳輸速率,並且還要比現今大以數倍的連結數,全球將走入萬物皆聯網的時代(圖1)。

圖1 5G發展趨勢
知名咨詢機構麥肯錫指出,2025年物聯網(IoT)的應用產值將達到11.1兆美元,5G提出低延遲、高傳輸、低耗能、大連結等特性,5G行動通訊預計在2020年全球將有500億個終端產品具備上網功能,整體系統容量(Capacity)需求也較4G增加1000倍以上,並且其傳輸延遲必須小於1毫秒(ms),因此下一代5G通訊的效能提升及技術挑戰勢必比先前更加嚴峻。

隨著智慧電表、智慧家電、智慧工廠、可穿載設備這些應用型終端的大量出現,越來越多的工作和生活都須要透過智慧終端來解決,對此,高密度的連結及降低終端成本需求變得越來越大,必要有新的技術來因應這樣的需求。

5G關鍵技術剖析

在5G未來發展,不僅需要大的傳輸速率,並且還要比現今大以數倍的連結數,全球將走入萬物皆聯網的時代,在3GPP首先提出機器對機器(M2M)/機器類型通訊( Machine Type Communication, MTC),其設計的目標主要有更低的設備成本、更低的功耗、更大的覆蓋率和支援大量的設備連線,但外界多數認為這只是一個過渡階段的版本,因為其功耗和建置成本還是過高,對於需要更低功耗及更大量的連結數的應用來說,其還是不夠為一可使用的技術,因此3GPP在R13提出一種更低傳輸資料量,更低的設備成本、更廣覆蓋率的技術,稱做NB-IoT(Narrowband-Internet of Thing),其最大的傳輸資料量為200kbit/s,頻寬也降至200kHz,並且其覆蓋率可在提升數倍,因此各主流電信營運商無不極力支持此技術(表1)。

NB-IoT搶進物聯網藍海

物聯網已發展多年,各式的應用及技術都相繼被提出,如LoRa和SIGFOX,也都強調低功耗以及廣大覆蓋率的需求,但由於LoRa及SIGFOX使用非授權頻譜,因此代表不管任何人皆可使用此頻段,也形成許多不可控制的干擾問題,這變成在使用上非常不可靠,因此全球各大電信營運商傾向支持3GPP所提出之NB-IoT的技術,由於其使用授權頻段,並且可以在原本的蜂巢式網路設備上快速部署NB-IoT的建置,對營運商而言便可以節省布建成本及快速整合原有長程演進計畫(LTE)網路,因此可以預見未來NB -IoT將為全球主流電信商所推行的方向。

NB-IoT為一低功耗廣域網路(Low Power Wide Area,LPWA)的技術,其特點便是極低的功耗和廣大的覆蓋率及龐大的連結數,其裝置覆蓋范圍可以提升20dB,並且電池壽命可以超過10年以上,每個NB-IoT載波最多可支援二十萬個連結,而且根據容量需求,可以透過增加更多載波來擴大規模,使單一基地台便能支援數百萬個物聯網連結。

在NB-IoT的設計上有幾項目標,一為提升涵蓋率,可以藉由降低編碼率(Coding Rate)來提升訊號的可靠性,進而使訊號強度微弱時,依舊能夠正確解調,達到提高覆蓋率的目的,另外為要大幅提升電池使用周期,其發送的能量最大為23dBm,約為200毫瓦(mW),還有為降低終端的復雜度,因此其調變上使用恆定包絡(Constant Envelope)的方式,可以使功率放大器(Power Amplifier, PA)運作於飽和區間,讓傳送端有更好的使用效率,在實體層設計上,也可以簡化部分元件,使復雜度降低,還有為減少系統頻寬,其頻寬設計在200kHz,因為在物聯網上不需要這么高的傳輸速率,所以便不需要這么大的頻譜,在使用上也能夠更彈性地分配,而還有一個重要設計目標就是要大幅的提升系統容量,使得大量的終端能夠同時連結,其中一種方法為可以使子載波區間更小,使得在頻譜資源分配上能夠更加的彈性,切出更多子載波分配給更多的終端。

NB-IoT在頻譜上有三種布建方式,第一種為單獨布建(Standalone),此種布建方式為使用獨立或全球行動通訊系統(GSM)的頻譜,彼此不會互相干擾,是最單純的布建方式,但需要一段自己的頻譜。第二種是使用保護頻段(Guard Band)來布建,利用LTE頻譜邊緣保護頻段,訊號強度較弱的部分布建,優點是不需要一段自己的頻譜,缺點是可能發生與LTE系統干擾問題。而第三種是在現行運作頻段內布建(In Band),部署情境如圖2所示,在使用的頻譜則選擇在低頻段上,像是700MHz、800MHz、900MHz等,因為在低頻段能有更廣的覆蓋率,並且有較好的傳波特性,對於室內環境可以有更深的滲透率。

圖2 NB-IoT三種部署情境圖片來源:NB-IoT enabling new business opportunities, 華為
然而,目前3GPP所提出之NB-IoT也包含各項不同的技術,目前主要可分為兩個方向,一為由諾基亞(Nokia)、愛利信(Ericsson)和英特爾(Intel)等陣營支持的NB -LTE(Narrowband-LTE)以及華為和Vodafone支持的NB-CIoT(Narrowband-Cellular IoT),兩種技術對於營運商最大的差別在於其可以在現有的LTE環境中,有多少可以重新使用於物聯網的應用中。

在NB-LTE幾乎可與目前現行的LTE設備相容,但NB-CIoT可說是一個重新設計的技術,須要建構新的晶片,但在其涵蓋率可望更加地提升,設備成本也更為降低,因此兩個技術可說各有千秋,下面將對兩個技術做一概述。

NB-LTE向後兼容降成本

在NB-LTE使用的頻寬為200KHz,在下行使用的是正交分頻多工存取(Orthogonal Frequency Division Multiple Access,OFDMA)的技術,子載波頻寬為15kHz,而在正交頻分多工(OFDM)符元(Symbol)以及時隙(Time Slot)和子訊框(Subframe)的區間,與原有的LTE規范相同。

NB-IoT上行使用的是單載波分頻多重存取(Single-carrier Frequency-Division Multiple Access, SC-FDMA),子載波頻寬為2.5kHz,是原本LTE子載波頻寬的六分之一,而在符元以及時隙和子封包的區間為原有LTE的六倍。NB-LTE最主要希望能夠使用舊有的LTE實體層部分,並且有相當大的程度能夠使用上層的LTE網路,使得營運商在布建時能夠減少設備升級的成本,在建置上也能夠沿用原有的蜂巢網路架構,達到快速布建的目的。

以下行部分來看,在同步訊號(PSS/SSS)、實體廣播通道(PBCH)及實體下行控制通道(PDCCH)等須要去做調整或重新設計,並且在原來一些控制通道,如實體控制格式指示通道(PCFICH)和實體混合自動重傳請求指示通道(PHICH),則省略去給資料做傳送。而在NB-LTE中,為了將頻寬縮減至200kHz,為原本LTE最小頻寬1.4MHz的六分之一,因此將傳送的時間周期拉長,所以在NB-LTE定義一種新的時間單位,稱作M-subframe,其為原有LTE系統連續六個Subframe所構成,因此其時間長度為6毫秒,而六個M-subframe構成一個M-frame(圖3),在一個M-subframe,最小的調度單位為一個實體層無線資源區塊(Physical Resource Block,PRB),代表一個M-subframe中最多能夠支援六個終端。

圖3 NB-LTE下行封包設計圖片來源:3GPP TR 45.820
在上行部分,使用的是SC-FDMA,終端能夠彈性的使用各個單載波資源,在NB-IoT的應用上,接收端必須要能夠容忍非常弱的訊號,而且時間延遲可能會很大,由於每個終端要與基地台做時間的對齊,其時間的誤差要小於循環字首(Cyclic Prefix,CP),所以在CP的設計上必須要更加地拉長,因此在子載波頻寬的設計上為原來的六分之一,到2.5kHz,這么做也可以使終端設備在頻譜上做更彈性的配置。

NB-CIoT新設計大應用

在NB-CIoT中,下行使用的是OFDMA,與以往的LTE系統不同,NB-CIoT使用四十八個頻寬為3.75 kHz的子載波,並使用六十四點的快速傅立葉轉換(FFT),其取樣頻率240kHz,也與舊有的LTE系統不同。在時間單位上,NB-CIoT一個封包由八個子封包組成,而在每個子封包可在分為三十二個時隙,每個時隙又分為十七個符元(圖4)。

圖4 NB-CIoT下行封包設計圖片來源:3GPP TR 45.820
其在各個訊號通道也重新設計,如同步訊號(PSS/SSS),雖也像LTE系統使用固定振幅(Constant Amplitude)的ZC序列(Zadoff-Chu Sequence),但其會復制兩次傳送,為的是增加偵測的可靠度,而在實體下行分享通道(PDSCH)原本使用渦輪碼(Turbo Coding)的編碼,也改為適合小資料傳輸的卷積編碼(Convolution Coding),可更加簡化系統架構及復雜度,提高系統應對物聯網需求的能力。

在上行部分,採用的是分頻多重存取(Frequency Division Multiple Access,FDMA)系統,與OFDM系統相比,每個子載波間不需要正交,因此並不需要精確的時間及頻率校準,而在頻率使用上,NB-CIoT使用三十六個5kHz頻寬的子載波,而其支援GMSK(Gaussian-shaped Minimum Shift Keying)的調變,GMSK為恆定包絡的調變並且有PSK(Phase Shift Keying)的特性,可提供較高的頻譜效益,並且可以使PA運作在飽和區間,得到更有效率的表現。

可以發現在NB-CIoT在整體設計上和以往LTE系統有非常大的不同,不僅在封包時間的架構上,在各個使用的通道也重新設計,因此對於營運商來說,必須要重新設計晶片模組,對於成本及建置的速度上便是一大需要顧及的地方。

NB-LTE與NB-CIoT各有千秋

NB-LTE與NB-CIoT各項技術的比較如表2所示,在NB-LTE中,大部分與原有LTE系統相同,如使用的接取技術和FFT與取樣頻率的大小等,但NB -CIoT,卻是截然不同的設計規格。

對於營運商來說,NB-LTE能夠與舊有的系統直接套用,無須耗費太大的成本,並且能夠快速度布建在原有的蜂巢式網路基站中,而NB-CIoT中,不論在封包設計、取樣頻率或子載波頻寬大小上,都與原本LTE不同,但正由於其是專為物聯網所重新設計的規格,因此它在各樣應用於物聯網的特性上,會比NB- LTE更加地適合,如在取樣頻率上,NB-LTE依舊是1.92MHz,這在設備的成本上依舊會是一大考量,而NB-CIoT的取樣頻率就降至240kHz,便可以大幅降低設備成本以及耗電量。

NB-CIoT的CP也較NB-LTE更加地長,便更能夠抵抗時間的延遲,使傳輸距離可以更遠,所以NB-LTE與NB-CIoT都各有不同的優勢與劣勢,因此最後定案的技術與運作模式可能要等到3GPP所訂出之標准規范後才能明朗化。

最終的NB-IoT的版本可能是這兩個版本中選擇一個,或是兩個技術盡量融合成一個版本,但有幾項技術原則必須要存在,包括:NB-IoT要同時支援Standalone、Guard Band及In Band的三種布建方式;使用180kHz的頻寬;在下行鏈路使用OFDMA的系統;在上鏈使用GMSK或SC-FDMA系統;在L2以上的技術與通信規范,要盡量與原有LTE系統重用。

NB-IoT勢在必行

在未來進入萬物聯網的時代,各種後端應用相繼產生,因此要如何使這些應用徹底地實現,以及營運商要如何在這當中分得其中一塊大餅,NB-IoT無疑是一個必要推行的技術,由於如SIGFOX或LoRa,其使用免授權頻段,對於資料可靠性和安全性是一大考量,重要的是營運商如何在其中獲取利益也是須要考量的部分,而NB-IoT由既有的LTE網路架構,再更新其部分設備元件,便能夠快速地打入物聯網市場,對於未來一日千里的通訊發展及需求,建置及部署的速度無疑是非常關鍵的考量,並且其使用的是授權頻段,對於資料的安全性及可靠度便大大的提升,且可以減少許多不必要的干擾問題,在今年(2016)的年中預計會定出一版NB-IoT的標准規范,屆時便能夠看見將來的窄頻物聯網的發展。

閱讀全文

與5G的關鍵技術有哪些相關的資料

熱點內容
非kyc有哪些數字貨幣交易所 瀏覽:825
代理二手車行怎麼樣 瀏覽:120
什麼產品去痘印 瀏覽:512
商業產品的照片怎麼調色 瀏覽:267
男生沒回信息一般在干什麼 瀏覽:244
通用技術作品思路怎麼寫 瀏覽:418
想做葯品代理怎麼辦 瀏覽:131
四室住宅產權證未滿五年如何交易 瀏覽:203
測你是什麼嘴型小程序 瀏覽:862
遼陽做小程序多少錢 瀏覽:355
調料新手怎麼去市場了解價格質量 瀏覽:698
南陽現貨交易市場怎麼樣 瀏覽:68
肉雞技術員待遇怎麼樣 瀏覽:398
買貓產品怎麼搜 瀏覽:201
哪些手游可以交易裝備的 瀏覽:865
申通代理商什麼時候拿到錢 瀏覽:815
串口通信數據出錯是什麼原因 瀏覽:500
重要信息修改什麼意思 瀏覽:152
蘋果手錶顯示信息能顯示多少 瀏覽:280
環境質量數據來自哪裡 瀏覽:566