⑴ 基因編輯技術目前哪家公司最專業最有實力
我來回答,就在剛剛過去的世界生命科學大會上,孟山都公司的 精準育種、微生物、大數據技術獲得了大家的關注,會上孟山都展示了其轉基因技術的實力和成果,也提出在未來,以CRISPR為首的基因編輯等精準育種技術讓作物育種變得更快、更准。
⑵ 想學基因編輯該學什麼專業
想學基因編輯該學生物技術專業。
基因編輯是生物技術專業。基因編輯(GenomeEditing),又稱基因組工程,是遺傳工程的一種,是指在活體基因組中進行DNA插入、刪除、修改或替換的一項技術。
生物技術畢業生應獲得以下幾方面的知識和能力:
1、掌握數學、物理、化學等方面的基本理論和基本知識;
2、掌握基礎生物學、生物化學、分子生物學、微生物學、基因工程、發酵工程及細胞工程等方面的基本理論、基本知識和基本實驗技能,以及生物技術及其產品開發的基本原理和基本方法;
3、了解相近專業的一般原理和知識;
4、熟悉國家生物技術產業政策、知識產權及生物工程安全條例等有關政策和法規;
5、了解生物技術的理論前沿、應用前景和最新發展動態,以及生物技術產業發展狀況;
6、掌握資料查詢、文獻檢索及運用現代信息技術獲取相關信息的基本方法;具有一定的實驗設計,創造實驗條件,歸納、整理、分析實驗結果,撰寫論文,參與學術交流的能力。
⑶ 兩位女科學家獲諾貝爾化學獎,基因編輯是一種怎樣的技術
10月7日,2020年,諾貝爾化學獎在瑞典正式揭曉。法國科學家埃瑪紐埃勒·沙爾龐捷(Emmanuelle Charpentier)和美國科學家珍妮弗·安妮·道德納(Jennifer A. Doudna)一起榮獲了這一獎項,原因是她們證明了CRISPR-Cas9基因剪刀的准確和有效性。
一、2020年諾貝爾化學獎當地時間10月7日,法國科學家埃瑪紐埃勒·沙爾龐捷和美國科學家珍妮弗·安妮·道德納獲得諾貝爾化學獎。獲獎理由是,她們開發了一種基因組編輯的方法,證明了基因修飾方法的有用性,說明基因剪刀CRISPR-Cas9對醫學、生物製造等方面有著不一般的效果。這兩位科學家均是女性,沙爾龐捷於1968年出生,道德納於1964年出生。
親愛的讀者朋友們,你們對基因編輯技術有哪些了解呢?
⑷ 請問什麼是基因編輯,如何編輯
"公眾對轉基因擔心的並不是基因技術,關鍵是轉基因的「轉」,現在通過基因測序研究已發展出基因編輯技術,可根據需要對原來的基因進行重新編輯,它可以不轉任何新的基因,也能產生很好效果。中國今後將在進一步開展轉基因研究的同時,積極推動基因編輯技術研究"。大媽連基因編輯都知道,真是厲害啊。既然提到這個,我就來科普一下啦。這個技術被Science期刊列為2013年十大突破中的第二位。導引RNA-Cas9系統是目前最簡單有效的基因編輯方法。這個系統本身最初是受細菌抵抗噬菌體的啟發。理論上你可以合成跟任何基因的DNA互補的導引RNA,這個RNA通過DNA-RNA序列互補(鹼基配對),把核酸酶Cas9定位到目標基因,然後Cas9利用它的核酸酶活性把目標基因在特定的部位切斷。之後,細胞自身的DNA損傷修復機制可以被用來改變目標基因Cas9切割點附近的DNA序列。這個系統可以用來選擇性剔除某個基因,控制目標基因的轉錄活性,甚至有可能用來糾正導致遺傳性疾病的突變基因。可是說到底,這個系統還是需要導入外源蛋白Cas9(最常用的是來自鏈球菌的Cas9)。另外,基因編輯只是對內源(原有)基因的修飾,而作物之所以需要轉基因,常常是因為它們的內源基因裡面沒有包括編碼某些有益性狀的基因。如果要把內源的某個基因就地變成一個新的基因,即使技術上可以做到,帶來的壞處也很可能超過好處(當然在特定條件下可能有例外),因為這個基因就會失去了原來該有的功能。當然,在有的情況下,可以利用基因編輯技術改變基因組裡面某些基因的表達水平,就可以加強某些有益的性狀和減弱某些有害性狀。總之反轉跟信教一樣,是一種思維定式,基本上無解,不是技術手段可以解決的問題。
⑸ 什麼大學研究 CRISPR基因編輯技術
該技術目前基本成熟,已經成為基因編輯的強大工具,國內很多高校已經採用該技術進行生物實驗。但是國內沒聽說過有專門研究該技術的高校和研究所。
麻省理工學院MIT以及布羅德研究所broad擁有 CRISPR基因編輯技術的專利。
美國加州伯克利分校最早啟動專項研究基金,成果很多,但沒有取得專利權。
⑹ 基因編輯到底是什麼
嗨~來看點更專業的回答吧 ♪(・ω・)ノ
CRISPR/Cas基因編輯系統
CRISPR/Cas(Clustered Regularly Interspaced Short Palindromic Repeats/Cas)系統是目前被廣泛運用的基因編輯系統,其原理是由CRISPR轉錄產生的gRNA介導Cas核酸酶靶向目標序列,對序列進行切割。
CRISPR/Cas9基因編輯示意圖
(圖源:Wellcome Trust Sanger Institute,Sanger)
CRISPR/Cas基因敲除
CRISPR/Cas9系統中sgRNA(smallguideRNA)識別並結合目標基因的靶向序列,引導Cas9對結合位點進行剪切,產生DNA雙鏈斷裂(double-strandbreak,DSB),機體自身通過非同源重組(non-homologousendjoining,NHEJ)的方式修復DSB,參與修復的蛋白經常會在DNA末端插入或刪除幾個鹼基,修復後的基因由於產生突變而導致功能喪失,從而實現機體內的基因敲除。
應用:基因敲除細胞系建立、基因敲除建立動物疾病模型。
技術優勢:相較於在mRNA水平「敲低」目的基因的RNAi而言,CRISPR/Cas9系統造成基因序列的缺失,從而能完全沉默(即敲除)目的基因。
CRISPR/Cas基因敲入
CRISPR/Cas9系統中sgRNA(smallguideRNA)識別並結合目標基因的靶向序列,引導Cas9對結合位點進行剪切,產生DNA雙鏈斷裂(double-strandbreak,DSB),通過細胞內的同源重組(homologousrecombination,HR)修復方式,將外源供體DNA定點導入至基因組的靶位點中,從而實現基因敲入。
應用:基因片段敲入細胞系建立、基因單鹼基突變細胞系建立、基因敲入建立動物疾病模型。
技術優勢:操作簡易、效率高、具有廣譜性且提供BSL-1和BSL-2病毒注射及實驗操作平台。
CRISPR/dCas9調控內源基因的轉錄激活與抑制
CRISPR-dCas9系統即是dCas9與轉錄激活因子(如VP64)或轉錄抑制因子(如KRAB)融合後,結合sgRNA能促進或抑制目的基因的表達。
應用:目的基因在內源環境中過表達、誘導iPSC、抑製表達等。
技術優勢:操作簡易、效率高、具有廣譜性且提供BSL-1和BSL-2病毒注射及實驗操作平台,同時可與RNAi聯合作用。
==========================
如果您正在研究或者學習神經科學,生物病毒,基因治療等方向,或是正在使用各類工具病毒做科研實驗,可以網路搜索布林凱斯braincase,官網上有更詳細的案例分析和專業解讀哦~
⑺ 基因編輯技術是什麼它是如何在醫學領域應用的
基因編輯技術可以准確地改造人類基因,達到基因治療效果。中國科學院生物化學與細胞生物學研究所李勁松研究組通過在小鼠胚胎中注射CRISPR/Cas9糾正白內障小鼠模型中的遺傳缺陷,所產生的後代是可育的並能將修正後的等位基因傳遞給它們的後代。杜氏肌營養不良(DMD)是一種罕見的肌肉萎縮症,也是最常見的致命性遺傳病之一,是由肌營養不良蛋白dystrophin基因突變引起。杜克大學Charles Gersbach研究組應用CRISPR/Cas9在DMD小鼠中將dystrophin基因突變的23外顯子剪切,而合成了一個截短的但功能很強的抗肌萎縮蛋白,這是生物學家「首次成功地利用CRISPR基因編輯技術治癒了一隻成年活體哺乳動物的遺傳疾病」。
►CAR-T治療簡圖,圖片來自onclive.com
基因編輯技術聯合免疫療法在腫瘤及HIV/AIDS治療具有廣泛的應用前景。嵌合抗原受體T細胞(Chimeric Antigen Receptor T cell,CAR-T)細胞治療是非常有前景的腫瘤治療方法。CAR-T細胞療法在B細胞惡性血液腫瘤治療中已經取得碩果。中科院動物研究所王皓毅研究組利用CRISPR/Cas9技術在CAR-T細胞中進行雙基因(TCRα subunit constant 和beta-2 microglobulin)或三基因(TRAC,B2M及programmed death-1)敲除。美國斯隆凱特林癌症紀念中心Michel Sadelain研究組發現CRISPR/Cas9技術將CAR基因特異性靶向插入到細胞的TRAC基因座位點,極大增強了T細胞效力,編輯的細胞大大優於傳統在急性淋巴細胞白血病小鼠模型中產生CAR-T細胞。
繼諾華的Kymriah以及Gilead (kite Pharma)的Yescarta接連上市,CRISPR Therapeutics公司也在應用CRISPR/Cas9基因編輯技術開發同種異體CAR-T候選產品。2016年10月,四川大學華西醫院的腫瘤醫生盧鈾領導的一個團隊首次在人體中開展CRISPR試驗,從晚期非小細胞肺癌患者體內提取出免疫細胞,再利用CRISPR/Cas9技術剔除細胞中的PD-1基因更有助於激活T細胞去攻擊腫瘤細胞,最後將基因編輯過的細胞重新注入患者體內。
7 致病菌及抗病毒研究微生物種群與人體醫學,自然環境息息相關。北卡羅來納大學Rodolphe Barrangou與Chase L. Beisel合作通過使用基因組靶向CRISPR/Cas9系統可靶向並區分高度密切相關的微生物,並程序性去除細菌菌株,意味著CRISPR/Cas9系統可開發成精細微生物治療體系來剔除有害致病菌,人類將有可能精確控制微生物群體的組成。以色列特拉維夫大學Udi Qimron將CRISPR系統導入溫和噬菌體中在侵染具有抗生素抗性的細菌以消滅此類細菌,CRISPR系統已具有成為新一類抗生素的潛力。Locus BioSciences公司也在開發在噬菌體中開發CRISPR系統以達消滅難辨梭菌的目的。
弗吉尼亞理工大學Zhijian Tu研究組在雄蚊子中進行M因子基因編輯,可以導致雌雄蚊之間的轉化或雌蚊的殺戮,從而實現有效的性別分離和有效減少蚊子的數量,也將減少寨卡病毒及瘧疾等傳播。
基於CRISPR治療不僅可以應用於根除共生菌或有益菌群的病原體,也可應用於靶向人類病毒,包括HIV-1,皰疹病毒,乳頭瘤病毒及乙型肝炎病毒等。具有純合的32-bp缺失(Δ32)的CC趨化因子受體5型(CCR5)基因的患者對HIV感染具有抗性。因此加利福尼亞大學Yuet Wai Kan在誘導多能幹細胞iPSC中利用CRISPR系統引入純合CCR5Δ32突變後,誘導分化後的單核細胞和巨噬細胞對HIV感染具有抗性。天普大學Kamel Khalili 課題組應用CRISPR/Cas9系統在宿主細胞基因組中精確編輯HIV-1 LTR U3區,從而在將艾滋病病毒從基因組中剔除。
8 核酸診斷及細胞事件記錄Cas12a (Cpf1)屬於CRISPR家族另一核酸內切酶,它也可被gRNA引導並剪切DNA。但是,它不僅可以切割相結合的單鏈或雙鏈DNA,也剪切其他的DNA。近日,加州大學伯克利分校Jennifer Doudna研究組開發了基於CRISPR的一項新技能——基因偵探(DNA Endonuclease Targeted CRISPR Trans Reporter (DETECTR))。利用單鏈DNA將熒光分子和淬滅分子連接構建成一個報告系統,當CRISPR-Cas12a在gRNA引導下結合到目標DNA並發揮剪切作用時,報告系統中的DNA也被剪切,熒光分子將被解除抑制。此系統在致癌性HPV的人的DNA樣品檢測HPV16和HPV18變現極佳。
布羅德研究所Feng Zhang研究組開發的基於CRISPR的2代SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCKing),原理是利用Cas13a被激活後,可以切割除靶序列外其他的RNA的特徵,引入了解除熒光分子的抑制。此工具可實現一次性多重核酸檢測,可同時檢測4種靶標分子,額外添加的Csm6使得這種工具比它的前身具有更高的靈敏度,並將它開發成微型試紙條檢測方法,簡單明了易操作,已被研究人員成功應用於RNA病毒,如登革熱病毒和寨卡病毒,及人體液樣本檢測。
Broad研究所David R. Liu研究組利用CRISPR/Cas9開發了一種被稱為CAMERA(CRISPR-mediated analog multi-event recording apparatus)的記錄細胞事件的「黑匣子」他們利用這個系統開發出兩種細胞記錄系統,在第一種被稱為「CAMERA 1」的細胞記錄系統中,研究人員利用細菌中質粒的自我復制但又嚴格控制其自身數量的特徵,
將兩種彼此之間略有不同的質粒以穩定的比例轉化到細菌中,隨後在接觸到外來葯物刺激時,利用CRISPR/Cas9對這兩種質粒中的一種進行切割,通過對質粒進行測序並記錄兩種質粒比例的變化來記錄細菌接觸外來刺激的時間。另一種細胞記錄系統被稱為「CAMERA 2」,它利用基於CRISPR/Cas9的鹼基編輯系統實現在細胞內特定信號發生時改變遺傳序列中的單個鹼基,以此實現對諸如感染病毒、接觸營養物等刺激的記錄。這套技術的出現將很大程度的幫助人們進一步了解細胞的各類生命活動的發生發展規律。
9 人類胚胎基因組編輯2015 年 4 月,中山大學的黃軍利用CRISPR/Cas9介導的基因編輯技術,同源重組修復了胚胎中一個引發地中海貧血β-globin gene (HBB)的突變。
►圖片來自kurzgesagt.org
2016年,廣州醫科大學的范勇團隊在三原核受精卵中,應用基因編輯技術CRISPR受精卵中的基因CCR5進行編輯引入CCR5Δ32純合突變由於當時脫靶效率問題突出,產生了鑲嵌式的受精卵。
2017年8月2日,俄勒岡健康與科學大學胚胎細胞和基因治療中心Shoukhrat Mitalipov研究組公布了其應用CRISPR在人類胚胎中進行DNA編輯的結果,糾正了突變的MYBPC3基因,其突變會引起心肌肥厚並將年輕運動員猝死。
⑻ 基因編輯技術形式有哪些
基因編輯技術形式有:
1、同源重組
同源重組(Homologous recombination)是最早用來編輯細胞基因組的技術方法。同源重組是在DNA的兩條相似(同源)鏈之間遺傳信息的交換(重組)。
2、核酸酶
基因編輯的關鍵是在基因組內特定位點創建DSB。常用的限制酶在切割DNA方面是有效的,但它們通常在多個位點進行識別和切割,特異性較差。為了克服這一問題並創建特定位點的DSB。
基因編輯技術的應用:
基因編輯和牛體外胚胎培養等繁殖技術結合,允許使用合成的高度特異性的內切核酸酶直接在受精卵母細胞中進行基因組編輯。
CRISPR
-Cas9進一步增加了基因編輯在動物基因靶向修飾的應用范圍。CRISPR-Cas9允許通過細胞質直接注射從而實現對哺乳動物受精卵多個靶標的一次性同時敲除(KO)。
單細胞基因表達分析已經解決了人類發育的轉錄路線圖,從中發現了關鍵候選基因用於功能研究。使用全基因組轉錄組學數據指導實驗,基於CRISPR的基因組編輯工具使得干擾或刪除關鍵基因以闡明其功能成為可能。
以上內容參考:網路—基因編輯技術
⑼ 基因編輯是一種什麼技術 跟轉基因技術區別在哪
1、針對不同
轉基因技術是指利用DNA重組、轉化等技術將特定的外源目的基因轉移到受體生物中,並使之產生可預期的、定向的遺傳改變。
基因編輯是一種新興的比較精確的能對生物體基因組特定目標基因進行修飾的一種基因工程技術。
2、作用不同
基因編輯技術指能夠讓人類對目標基因進行定點「編輯」,實現對特定DNA片段的修飾。
人們通常將植物基因工程稱之為「轉基因技術」,所獲得的產品被稱為轉基因植物或轉基因作物,有時也使用「遺傳修飾生物」或「工程作物」等名稱。
3、技術不同
轉基因即將人工分離、修飾後的D N A、基因導人生物細胞基因組,在導入基因表達的影響下,原有生物體的性狀也會發生變化。
基因編輯依賴於經過基因工程改造的核酸酶,也稱「分子剪刀」,在基因組中特定位置產生位點特異性雙鏈斷裂(DSB),誘導生物體通過非同源末端連接(NHEJ)或同源重組(HR)來修復DSB,因為這個修復過程容易出錯,從而導致靶向突變。這種靶向突變就是基因編輯。