A. 人臉識別技術利用的是什麼原理
人臉識別,特指利用分析比較人臉視覺特徵信息進行身份鑒別的計算機技術。人臉識別是一項熱門的計算機技術研究領域,人臉追蹤偵測,自動調整影像放大,夜間紅外偵測,自動調整曝光強度;它屬於生物特徵識別技術,是對生物體(一般特指人)本身的生物特徵來區分生物體個體。
人臉識別技術包含三個部分:(1)人臉檢測面貌檢測是指在動態的場景與復雜的背景中判斷是否存在面像,並分離出這種面像。一般有下列幾種方法:①參考模板法首先設計一個或數個標准人臉的模板,然後計算測試採集的樣品與標准模板之間的匹配程度,並通過閾值來判斷是否存在人臉;②人臉規則法由於人臉具有一定的結構分布特徵,所謂人臉規則的方法即提取這些特徵生成相應的規則以判斷測試樣品是否包含人臉③樣品學習這種方法即採用模式識別中人工神經網路的方法,即通過對面像樣品集和非面像樣品集的學習產生分類器④膚色模型法這種方法是依據面貌膚色在色彩空間中分布相對集中的規律來進行檢測。⑤特徵子臉法這種方法是將所有面像集合視為一個面像子空間,並基於檢測樣品與其在子孔間的投影之間的距離判斷是否存在面像。值得提出的是,上述5種方法在實際檢測系統中也可綜合採用。(2)人臉跟蹤面貌跟蹤是指對被檢測到的面貌進行動態目標跟蹤。具體採用基於模型的方法或基於運動與模型相結合的方法。此外,利用膚色模型跟蹤也不失為一種簡單而有效的手段。(3)人臉比對面貌比對是對被檢測到的面貌像進行身份確認或在面像庫中進行目標搜索。這實際上就是說,將采樣到的面像與庫存的面像依次進行比對,並找出最佳的匹配對象。所以,面像的描述決定了面像識別的具體方法與性能。目前主要採用特徵向量與面紋模板兩種描述方法:①特徵向量法該方法是先確定眼虹膜、鼻翼、嘴角等面像五官輪廓的大小、位置、距離等屬性,然後再計算出它們的幾何特徵量,而這些特徵量形成一描述該面像的特徵向量。②面紋模板法該方法是在庫中存貯若干標准面像模板或面像器官模板,在進行比對時,將采樣面像所有象素與庫中所有模板採用歸一化相關量度量進行匹配。此外,還有採用模式識別的自相關網路或特徵與模板相結合的方法。人臉識別技術的核心實際為「局部人體特徵分析」和「圖形/神經識別演算法。」這種演算法是利用人體面部各器官及特徵部位的方法。如對應幾何關系多數據形成識別參數與資料庫中所有的原始參數進行比較、判斷與確認。一般要求判斷時間低於1秒。
B. 人臉識別系統識別人臉靠的是什麼
人臉識別技術是指利用分析比較的計算機技術識別人臉。 人臉識別技術屬於生物特徵識別技術,是對生物體(一般特指人)本身的生物特徵來區分生物體個體。
當今社會是一個信息化智能的時代,全新科技正在像社會普及。我們要學會運用它,並且全面完善它並發揮更大的效用。我相信在未來人臉識別技術會越來越完善。