導航:首頁 > 信息技術 > 品牌智能技術是什麼

品牌智能技術是什麼

發布時間:2024-02-09 20:56:15

Ⅰ 有誰可以普及一下什麼是智能製造啊

所謂智能製造,是一種新型生產方式,即源於人工智慧的研究,包含智能製造技術和智能製造系統,同時將新一代信息通信技術與先進製造技術進行深度融合,貫穿設計、生產、管理、服務等每個環節,能夠實現自感知、自執行、自決策等。

智能製造包括產品智能化、生產智能化、服務智能化、管理智能化。
1.產品智能化
產品智能化主要是依據相應的客戶需求,將所需的感測器、處理器、儲存器、通訊模塊等融入到產品中,使得產品具有記憶、感知、通信、識別定位等功能,更好的提升產品價值。
2.裝備智能化
根據人工智慧、信息處理等技術和設備融為一體,提高加工精密度,對生產設備進行全生命周期的管理,提高設備稼動率和安全性,幫助企業實現提質、降本、增效。
3.生產智能化
智能製造生產智能化,通過數控機床、工業機器人等生產設備與互聯網、大數據的聯合應用,對生產過程全方位監控,生產數據全方面採集,使得生產進度透明,實現車間管理可視化,提高生產效率和管理效率。
4.管理智能化
應用ERP、MES、PLM等管理軟體,使得企業數據的及時性、完整性、准確性不斷提升,對採集的數據進行匯聚、分析、判斷,促使管理更科學、合理、准確、高效。
5.服務智能化
以產品智能化為基礎,依託產品自身的可感知、可識別屬性,跟蹤產品狀態,拓展後續服務,對產品生命周期進行監管,為用戶進行遠程運維維保,為用戶提供高效、便捷和滿意服務,從生產性製造向生產服務型製造轉型升級。

Ⅱ 商業智能的核心技術是什麼

商業智能(Business Intelligence,簡稱:BI),又稱商業智慧或商務智能,指用現代數據倉庫技術、線上分析處理技術、數據挖掘和數據展現技術進行數據分析以實現商業價值。
商業智能的概念在1996年最早由加特納集團(Gartner Group)提出,加特納集團將商業智能定義為:商業智能描述了一系列的概念和方法,通過應用基於事實的支持系統來輔助商業決策的制定。商業智能技術提供使企業迅速分析數據的技術和方法,包括收集、管理和分析數據,將這些數據轉化為有用的信息,然後分發到企業各處。

Ⅲ 人工智慧的核心技術是什麼

人工智慧技術關繫到人工智慧產品是否可以順利應用到我們的生活場景中。在人工智慧領域,它普遍包含了機器學習、知識圖譜、自然語言處理、人機交互、計算機視覺、生物特徵識別、AR/VR七個關鍵技術。

一、機器學習
機器學習(MachineLearning)是一門涉及統計學、系統辨識、逼近理論、神經網路、優化理論、計算機科學、腦科學等諸多領域的交叉學科,研究計算機怎樣模擬或實現人類的學習行為,以獲取新的知識或技能,重新組織已有的知識結構使之不斷改善自身的性能,是人工智慧技術的核心。基於數據的機器學習是現代智能技術中的重要方法之一,研究從觀測數據(樣本)出發尋找規律,利用這些規律對未來數據或無法觀測的數據進行預測。根據學習模式、學習方法以及演算法的不同,機器學習存在不同的分類方法。
根據學習模式將機器學習分類為監督學習、無監督學習和強化學習等。
根據學習方法可以將機器學習分為傳統機器學習和深度學習。

二、知識圖譜
知識圖譜本質上是結構化的語義知識庫,是一種由節點和邊組成的圖數據結構,以符號形式描述物理世界中的概念及其相互關系,其基本組成單位是「實體—關系—實體」三元組,以及實體及其相關「屬性—值」對。不同實體之間通過關系相互聯結,構成網狀的知識結構。在知識圖譜中,每個節點表示現實世界的「實體」,每條邊為實體與實體之間的「關系」。通俗地講,知識圖譜就是把所有不同種類的信息連接在一起而得到的一個關系網路,提供了從「關系」的角度去分析問題的能力。
知識圖譜可用於反欺詐、不一致性驗證、組團欺詐等公共安全保障領域,需要用到異常分析、靜態分析、動態分析等數據挖掘方法。特別地,知識圖譜在搜索引擎、可視化展示和精準營銷方面有很大的優勢,已成為業界的熱門工具。但是,知識圖譜的發展還有很大的挑戰,如數據的雜訊問題,即數據本身有錯誤或者數據存在冗餘。隨著知識圖譜應用的不斷深入,還有一系列關鍵技術需要突破。

三、自然語言處理
自然語言處理是計算機科學領域與人工智慧領域中的一個重要方向,研究能實現人與計算機之間用自然語言進行有效通信的各種理論和方法,涉及的領域較多,主要包括機器翻譯、機器閱讀理解和問答系統等。
機器翻譯
機器翻譯技術是指利用計算機技術實現從一種自然語言到另外一種自然語言的翻譯過程。基於統計的機器翻譯方法突破了之前基於規則和實例翻譯方法的局限性,翻譯性能取得巨大提升。基於深度神經網路的機器翻譯在日常口語等一些場景的成功應用已經顯現出了巨大的潛力。隨著上下文的語境表徵和知識邏輯推理能力的發展,自然語言知識圖譜不斷擴充,機器翻譯將會在多輪對話翻譯及篇章翻譯等領域取得更大進展。
語義理解
語義理解技術是指利用計算機技術實現對文本篇章的理解,並且回答與篇章相關問題的過程。語義理解更注重於對上下文的理解以及對答案精準程度的把控。隨著MCTest數據集的發布,語義理解受到更多關注,取得了快速發展,相關數據集和對應的神經網路模型層出不窮。語義理解技術將在智能客服、產品自動問答等相關領域發揮重要作用,進一步提高問答與對話系統的精度。
問答系統
問答系統分為開放領域的對話系統和特定領域的問答系統。問答系統技術是指讓計算機像人類一樣用自然語言與人交流的技術。人們可以向問答系統提交用自然語言表達的問題,系統會返回關聯性較高的答案。盡管問答系統目前已經有了不少應用產品出現,但大多是在實際信息服務系統和智能手機助手等領域中的應用,在問答系統魯棒性方面仍然存在著問題和挑戰。
自然語言處理面臨四大挑戰:
一是在詞法、句法、語義、語用和語音等不同層面存在不確定性;
二是新的詞彙、術語、語義和語法導致未知語言現象的不可預測性;
三是數據資源的不充分使其難以覆蓋復雜的語言現象;
四是語義知識的模糊性和錯綜復雜的關聯性難以用簡單的數學模型描述,語義計算需要參數龐大的非線性計算

四、人機交互
人機交互主要研究人和計算機之間的信息交換,主要包括人到計算機和計算機到人的兩部分信息交換,是人工智慧領域的重要的外圍技術。人機交互是與認知心理學、人機工程學、多媒體技術、虛擬現實技術等密切相關的綜合學科。傳統的人與計算機之間的信息交換主要依靠交互設備進行,主要包括鍵盤、滑鼠、操縱桿、數據服裝、眼動跟蹤器、位置跟蹤器、數據手套、壓力筆等輸入設備,以及列印機、繪圖儀、顯示器、頭盔式顯示器、音箱等輸出設備。人機交互技術除了傳統的基本交互和圖形交互外,還包括語音交互、情感交互、體感交互及腦機交互等技術。

五、計算機視覺
計算機視覺是使用計算機模仿人類視覺系統的科學,讓計算機擁有類似人類提取、處理、理解和分析圖像以及圖像序列的能力。自動駕駛、機器人、智能醫療等領域均需要通過計算機視覺技術從視覺信號中提取並處理信息。近來隨著深度學習的發展,預處理、特徵提取與演算法處理漸漸融合,形成端到端的人工智慧演算法技術。根據解決的問題,計算機視覺可分為計算成像學、圖像理解、三維視覺、動態視覺和視頻編解碼五大類。
目前,計算機視覺技術發展迅速,已具備初步的產業規模。未來計算機視覺技術的發展主要面臨以下挑戰:
一是如何在不同的應用領域和其他技術更好的結合,計算機視覺在解決某些問題時可以廣泛利用大數據,已經逐漸成熟並且可以超過人類,而在某些問題上卻無法達到很高的精度;
二是如何降低計算機視覺演算法的開發時間和人力成本,目前計算機視覺演算法需要大量的數據與人工標注,需要較長的研發周期以達到應用領域所要求的精度與耗時;
三是如何加快新型演算法的設計開發,隨著新的成像硬體與人工智慧晶元的出現,針對不同晶元與數據採集設備的計算機視覺演算法的設計與開發也是挑戰之一。

六、生物特徵識別
生物特徵識別技術是指通過個體生理特徵或行為特徵對個體身份進行識別認證的技術。從應用流程看,生物特徵識別通常分為注冊和識別兩個階段。注冊階段通過感測器對人體的生物表徵信息進行採集,如利用圖像感測器對指紋和人臉等光學信息、麥克風對說話聲等聲學信息進行採集,利用數據預處理以及特徵提取技術對採集的數據進行處理,得到相應的特徵進行存儲。
識別過程採用與注冊過程一致的信息採集方式對待識別人進行信息採集、數據預處理和特徵提取,然後將提取的特徵與存儲的特徵進行比對分析,完成識別。從應用任務看,生物特徵識別一般分為辨認與確認兩種任務,辨認是指從存儲庫中確定待識別人身份的過程,是一對多的問題;確認是指將待識別人信息與存儲庫中特定單人信息進行比對,確定身份的過程,是一對一的問題。
生物特徵識別技術涉及的內容十分廣泛,包括指紋、掌紋、人臉、虹膜、指靜脈、聲紋、步態等多種生物特徵,其識別過程涉及到圖像處理、計算機視覺、語音識別、機器學習等多項技術。目前生物特徵識別作為重要的智能化身份認證技術,在金融、公共安全、教育、交通等領域得到廣泛的應用。

七、VR/AR
虛擬現實(VR)/增強現實(AR)是以計算機為核心的新型視聽技術。結合相關科學技術,在一定范圍內生成與真實環境在視覺、聽覺、觸感等方面高度近似的數字化環境。用戶藉助必要的裝備與數字化環境中的對象進行交互,相互影響,獲得近似真實環境的感受和體驗,通過顯示設備、跟蹤定位設備、觸力覺交互設備、數據獲取設備、專用晶元等實現。
虛擬現實/增強現實從技術特徵角度,按照不同處理階段,可以分為獲取與建模技術、分析與利用技術、交換與分發技術、展示與交互技術以及技術標准與評價體系五個方面。獲取與建模技術研究如何把物理世界或者人類的創意進行數字化和模型化,難點是三維物理世界的數字化和模型化技術;分析與利用技術重點研究對數字內容進行分析、理解、搜索和知識化方法,其難點是在於內容的語義表示和分析;交換與分發技術主要強調各種網路環境下大規模的數字化內容流通、轉換、集成和面向不同終端用戶的個性化服務等,其核心是開放的內容交換和版權管理技術;展示與交換技術重點研究符合人類習慣數字內容的各種顯示技術及交互方法,以期提高人對復雜信息的認知能力,其難點在於建立自然和諧的人機交互環境;標准與評價體系重點研究虛擬現實/增強現實基礎資源、內容編目、信源編碼等的規范標准以及相應的評估技術。
目前虛擬現實/增強現實面臨的挑戰主要體現在智能獲取、普適設備、自由交互和感知融合四個方面。在硬體平台與裝置、核心晶元與器件、軟體平台與工具、相關標准與規范等方面存在一系列科學技術問題。總體來說虛擬現實/增強現實呈現虛擬現實系統智能化、虛實環境對象無縫融合、自然交互全方位與舒適化的發展趨勢。

Ⅳ 什麼是智能技術

人工智慧是計算機科學的一個分支,它企圖了解智能的實質,並生產出一種新的能以人類智能相似的方式做出反應的智能機器,該領域的研究包括機器人、語言識別、圖像識別、自然語言處理和專家系統等。

人工智慧從誕生以來,理論和技術日益成熟,應用領域也不斷擴大,可以設想,未來人工智慧帶來的科技產品,將會是人類智慧的「容器」。人工智慧可以對人的意識、思維的信息過程的模擬。人工智慧不是人的智能,但能像人那樣思考、也可能超過人的智能。

人工智慧是一門極富挑戰性的科學,從事這項工作的人必須懂得計算機知識,心理學和哲學。人工智慧是包括十分廣泛的科學,它由不同的領域組成,如機器學習,計算機視覺等等,總的說來,人工智慧研究的一個主要目標是使機器能夠勝任一些通常需要人類智能才能完成的復雜工作。

但不同的時代、不同的人對這種「復雜工作」的理解是不同的。2017年12月,人工智慧入選「2017年度中國媒體十大流行語」。

(4)品牌智能技術是什麼擴展閱讀;

人工智慧在計算機上實現時有2種不同的方式。一種是採用傳統的編程技術,使系統呈現智能的效果,而不考慮所用方法是否與人或動物機體所用的方法相同。

這種方法叫工程學方法(ENGINEERING APPROACH),它已在一些領域內作出了成果,如文字識別、電腦下棋等。

另一種是模擬法(MODELING APPROACH),它不僅要看效果,還要求實現方法也和人類或生物機體所用的方法相同或相類似。

遺傳演算法(GENERIC ALGORITHM,簡稱GA)和人工神經網路(ARTIFICIAL NEURAL NETWORK,簡稱ANN)均屬後一類型。遺傳演算法模擬人類或生物的遺傳-進化機制,人工神經網路則是模擬人類或動物大腦中神經細胞的活動方式。

閱讀全文

與品牌智能技術是什麼相關的資料

熱點內容
湖人怎麼交易走威少 瀏覽:618
正規代理平台哪個好 瀏覽:131
數控技術用於鐵道局的工資怎麼樣 瀏覽:978
線上購物代理需要哪些手續 瀏覽:268
技術規范去哪裡買 瀏覽:728
登錄界面如何與資料庫進行交互 瀏覽:438
場內基金是些什麼人在交易 瀏覽:239
米9se用什麼數據線 瀏覽:297
花卉市場有哪些產品形式 瀏覽:389
為什麼現金分紅下個交易日才生效 瀏覽:240
青島哪個海鮮市場附近啤酒屋多 瀏覽:895
招聘老師考核哪些內容程序要多久 瀏覽:761
長形胚囊的數據是多少 瀏覽:608
福建眼霜加盟代理費用多少 瀏覽:135
開直播需要怎麼在電腦後台看數據 瀏覽:222
代理記賬在國標行業屬於什麼 瀏覽:938
期末如何算產品成本 瀏覽:967
大眾刷程序有什麼好處 瀏覽:221
千牛怎麼看產品客群 瀏覽:347
小程序如何讓老賴還錢 瀏覽:533