導航:首頁 > 信息技術 > 如何規范基因編輯技術

如何規范基因編輯技術

發布時間:2023-10-21 17:12:55

Ⅰ 請問什麼是基因編輯,如何編輯

"公眾對轉基因擔心的並不是基因技術,關鍵是轉基因的「轉」,現在通過基因測序研究已發展出基因編輯技術,可根據需要對原來的基因進行重新編輯,它可以不轉任何新的基因,也能產生很好效果。中國今後將在進一步開展轉基因研究的同時,積極推動基因編輯技術研究"。大媽連基因編輯都知道,真是厲害啊。既然提到這個,我就來科普一下啦。這個技術被Science期刊列為2013年十大突破中的第二位。導引RNA-Cas9系統是目前最簡單有效的基因編輯方法。這個系統本身最初是受細菌抵抗噬菌體的啟發。理論上你可以合成跟任何基因的DNA互補的導引RNA,這個RNA通過DNA-RNA序列互補(鹼基配對),把核酸酶Cas9定位到目標基因,然後Cas9利用它的核酸酶活性把目標基因在特定的部位切斷。之後,細胞自身的DNA損傷修復機制可以被用來改變目標基因Cas9切割點附近的DNA序列。這個系統可以用來選擇性剔除某個基因,控制目標基因的轉錄活性,甚至有可能用來糾正導致遺傳性疾病的突變基因。可是說到底,這個系統還是需要導入外源蛋白Cas9(最常用的是來自鏈球菌的Cas9)。另外,基因編輯只是對內源(原有)基因的修飾,而作物之所以需要轉基因,常常是因為它們的內源基因裡面沒有包括編碼某些有益性狀的基因。如果要把內源的某個基因就地變成一個新的基因,即使技術上可以做到,帶來的壞處也很可能超過好處(當然在特定條件下可能有例外),因為這個基因就會失去了原來該有的功能。當然,在有的情況下,可以利用基因編輯技術改變基因組裡面某些基因的表達水平,就可以加強某些有益的性狀和減弱某些有害性狀。總之反轉跟信教一樣,是一種思維定式,基本上無解,不是技術手段可以解決的問題。

Ⅱ 基因編輯技術及其應用科普漫談

DNA是絕大部分生物的遺傳信息的儲存介質,由腺嘌呤(A)、胸腺嘧啶(T)、鳥嘌呤(G)、胞嘧啶(C)四種核苷酸組成,並且嚴格遵守A-T,C-G的鹼基互補配對原則,DNA鏈上這四種核苷酸的排列信息就是生物體的主要遺傳信息。基因是控制生物性狀的基本遺傳單位,即一段攜帶特定遺傳信息的DNA序列,主要通過翻譯出對應的效用蛋白發揮功能。



圖3 基因編輯技術的基本原理示意圖

要實現基因編輯,外源切割復合體必須滿足兩個條件:

①切割復合體必須可以特異性地識別和結合至目的基因DNA序列上,這是各種基因編輯技術的主要差異所在,也是發展基因編輯技術的最大困難所在;

②切割復合體必須具有切割DNA,製造斷裂端的功能;

基因編輯技術的簡要發展歷史

自1953年沃森和克里克兩位科學家提出DNA的雙螺旋結構以來,人們一直都在積極探索著高效便利的基因編輯技術:

上世紀80年代,科學家在小鼠胚胎幹細胞中通過基因打靶技術實現了基因編輯(2007年諾貝爾生理醫學獎),但此技術在其餘細胞內效率極低,應用受到了極大的限制;

上世紀90年代,基於細胞內不同鋅指蛋白可特異性識別DNA上3聯鹼基的特徵以及核酸酶FokI二聚化後可以切割DNA的特點,人們通過鋅指蛋白偶聯Fokl的策略逐漸發展出了一種新的基因編輯技術--鋅指蛋白核酸酶技術(Zinc Finger Nucleases, ZFNs)。但此技術專利被公司壟斷,且鋅指蛋白數量有限,可以識別的DNA序列數量有限,其應用也受到了很大的限制。

隨後,基於改造後的植物病原菌中黃單胞菌屬的TAL蛋白可以特異性識別DNA中一個鹼基的特性,人們又發展出了新的基因組編輯技術--轉錄激活樣因子核酸酶技術(Transcription activator-like effector nucleases, TALENs)。此技術理論上可以實現對任意基因序列的編輯,但其操作過程較為繁瑣,一定程度上限制了其應用。

近年來,基於細菌規律成簇的間隔短迴文重復序列(Clustered Regularly Interspaced Short Palindromic Repeats,CRISPR)系統發展而來的新一代基因組編輯技術--CRISPR/Cas9技術,使得基因編輯變得更為簡易、高效。值得提出的是,華裔科學家張鋒教授對於CRISPR/Cas9技術的發展與應用作出了重要貢獻,是目前這一領域的領軍人物之一。

基因編輯技術的最新發展

由於目前最為廣泛應用的CRISPR/Cas9技術仍然存在著無法對所有基因序列實現編輯、可能錯誤編輯其餘基因、切割復合體中RNA容易降解導致復合體不穩定等一些不足之處,人們主要從以下幾個方面優化發展新的基因編輯技術:

1)優化CRISPR的蛋白序列,使得其可以識別更多的序列,並且能夠更為有效地編輯基因序列;

2) 尋找新的具有特異性識別和切割目的基因序列的蛋白。如張鋒教授在去年報道的Cpf1,已被證實為一類新的基因編輯工具;而目前引起廣泛爭議和關注的我國河北科技大學韓春雨教授在今年初報道的NgAgo,如果其真的可以實現細胞內的基因編輯,也是一類新的基因編輯工具,是目前各種基因編輯工具的有效補充;近期,我國南京大學學者又開發了一類新的基因編輯工具—SGN,也引起了學界的廣泛關注。

基因編輯技術的應用

隨著CRISPR/Cas9等新型基因編輯技術的迅猛發展,基因編輯技術在諸多方面都有著極為廣闊而光明的應用前景:

1) 畜牧業和農業方面,現在已經在包括雞、牛、羊等重要家畜和玉米、水稻、棉花等重要經濟作物中實現了基因改造,有效地提高了這些家畜和經濟作物的產量和質量;

2) 醫療健康方面,一方面,對於先天性基因突變致病患者,利用基因編輯技術改正突變的基因,可以為這些疾病的徹底根治提供希望。如在2013年,我國科學家上海生化細胞所的李勁松教授就利用CRISPR/Cas9技術治癒了小鼠的白內障遺傳疾病。另一方面,基因編輯技術還有望為徹底治癒一些重大疾病的提供希望,如利用基因編輯技術改造艾滋病病毒HIV-1攜帶者免疫細胞中的CCR5基因,可以使得細胞不再受HIV-1病毒感染,有望成為徹底戰勝艾滋病的有力武器。

結語:

迅猛發展的基因編輯技術正在給我們的生活帶來巨大的變化,在享受先進科學技術帶來的種種福利的同時,我們也必須進一步加強對於基因編輯技術的基礎研究以及應用管理,以確保這一先進技術得到正確而有效地應用。

編輯:何鄭燕 魯凡英

(專家:吳劍鋒,廈門大學生命科學學院博士,科普中國微平台原創首發)

Ⅲ 基因編輯技術在什麼條件下進行的

首先要從基因組的結構入手,再從基因組的結構是如備乎何影響基因的表達來分析,下來就是基因表達的產物--蛋白了。蛋白具有眾多拍早的生理學功能:可以作為結構蛋白,也可以作為酶而催化生化反應等等重要的作用。最後就是代謝產物了,在酶的催化作用下會產生眾多的代謝產物。這些代謝產物的水平變化可以反饋,反過來可以影響或者調控基因及蛋白的表達,最終還可以影響代謝產物自身的水平變化。

基因組編輯技術的優點就是可以從基因組水平來改變人類的遺傳性狀,解決目前困擾人類的疾病等問題。
弊端是目前基因組研究還沒有將基因組中許多組件的作用及特性完全闡述清楚,所以基因組的編輯可能會產生一些完全相反的結果或者是一些未知的不理襲滾雀想的結果。
自己發揮一下吧。

Ⅳ 基因編輯技術形式有哪些

基因編輯技術形式有:

1、同源重組

同源重組(Homologous recombination)是最早用來編輯細胞基因組的技術方法。同源重組是在DNA的兩條相似(同源)鏈之間遺傳信息的交換(重組)。

2、核酸酶

基因編輯的關鍵是在基因組內特定位點創建DSB。常用的限制酶在切割DNA方面是有效的,但它們通常在多個位點進行識別和切割,特異性較差。為了克服這一問題並創建特定位點的DSB。

基因編輯技術的應用:

基因編輯和牛體外胚胎培養等繁殖技術結合,允許使用合成的高度特異性的內切核酸酶直接在受精卵母細胞中進行基因組編輯。
CRISPR
-Cas9進一步增加了基因編輯在動物基因靶向修飾的應用范圍。CRISPR-Cas9允許通過細胞質直接注射從而實現對哺乳動物受精卵多個靶標的一次性同時敲除(KO)。

單細胞基因表達分析已經解決了人類發育的轉錄路線圖,從中發現了關鍵候選基因用於功能研究。使用全基因組轉錄組學數據指導實驗,基於CRISPR的基因組編輯工具使得干擾或刪除關鍵基因以闡明其功能成為可能。

以上內容參考:網路—基因編輯技術

Ⅳ 基因編輯技術是什麼它是如何在醫學領域應用的

6 基因療法

基因編輯技術可以准確地改造人類基因,達到基因治療效果。中國科學院生物化學與細胞生物學研究所李勁松研究組通過在小鼠胚胎中注射CRISPR/Cas9糾正白內障小鼠模型中的遺傳缺陷,所產生的後代是可育的並能將修正後的等位基因傳遞給它們的後代。杜氏肌營養不良(DMD)是一種罕見的肌肉萎縮症,也是最常見的致命性遺傳病之一,是由肌營養不良蛋白dystrophin基因突變引起。杜克大學Charles Gersbach研究組應用CRISPR/Cas9在DMD小鼠中將dystrophin基因突變的23外顯子剪切,而合成了一個截短的但功能很強的抗肌萎縮蛋白,這是生物學家「首次成功地利用CRISPR基因編輯技術治癒了一隻成年活體哺乳動物的遺傳疾病」。

CAR-T治療簡圖,圖片來自onclive.com

基因編輯技術聯合免疫療法在腫瘤及HIV/AIDS治療具有廣泛的應用前景。嵌合抗原受體T細胞(Chimeric Antigen Receptor T cell,CAR-T)細胞治療是非常有前景的腫瘤治療方法。CAR-T細胞療法在B細胞惡性血液腫瘤治療中已經取得碩果。中科院動物研究所王皓毅研究組利用CRISPR/Cas9技術在CAR-T細胞中進行雙基因(TCRα subunit constant 和beta-2 microglobulin)或三基因(TRAC,B2M及programmed death-1)敲除。美國斯隆凱特林癌症紀念中心Michel Sadelain研究組發現CRISPR/Cas9技術將CAR基因特異性靶向插入到細胞的TRAC基因座位點,極大增強了T細胞效力,編輯的細胞大大優於傳統在急性淋巴細胞白血病小鼠模型中產生CAR-T細胞。

繼諾華的Kymriah以及Gilead (kite Pharma)的Yescarta接連上市,CRISPR Therapeutics公司也在應用CRISPR/Cas9基因編輯技術開發同種異體CAR-T候選產品。2016年10月,四川大學華西醫院的腫瘤醫生盧鈾領導的一個團隊首次在人體中開展CRISPR試驗,從晚期非小細胞肺癌患者體內提取出免疫細胞,再利用CRISPR/Cas9技術剔除細胞中的PD-1基因更有助於激活T細胞去攻擊腫瘤細胞,最後將基因編輯過的細胞重新注入患者體內。

7 致病菌及抗病毒研究

微生物種群與人體醫學,自然環境息息相關。北卡羅來納大學Rodolphe Barrangou與Chase L. Beisel合作通過使用基因組靶向CRISPR/Cas9系統可靶向並區分高度密切相關的微生物,並程序性去除細菌菌株,意味著CRISPR/Cas9系統可開發成精細微生物治療體系來剔除有害致病菌,人類將有可能精確控制微生物群體的組成。以色列特拉維夫大學Udi Qimron將CRISPR系統導入溫和噬菌體中在侵染具有抗生素抗性的細菌以消滅此類細菌,CRISPR系統已具有成為新一類抗生素的潛力。Locus BioSciences公司也在開發在噬菌體中開發CRISPR系統以達消滅難辨梭菌的目的。

弗吉尼亞理工大學Zhijian Tu研究組在雄蚊子中進行M因子基因編輯,可以導致雌雄蚊之間的轉化或雌蚊的殺戮,從而實現有效的性別分離和有效減少蚊子的數量,也將減少寨卡病毒及瘧疾等傳播。

基於CRISPR治療不僅可以應用於根除共生菌或有益菌群的病原體,也可應用於靶向人類病毒,包括HIV-1,皰疹病毒,乳頭瘤病毒及乙型肝炎病毒等。具有純合的32-bp缺失(Δ32)的CC趨化因子受體5型(CCR5)基因的患者對HIV感染具有抗性。因此加利福尼亞大學Yuet Wai Kan在誘導多能幹細胞iPSC中利用CRISPR系統引入純合CCR5Δ32突變後,誘導分化後的單核細胞和巨噬細胞對HIV感染具有抗性。天普大學Kamel Khalili 課題組應用CRISPR/Cas9系統在宿主細胞基因組中精確編輯HIV-1 LTR U3區,從而在將艾滋病病毒從基因組中剔除。

8 核酸診斷及細胞事件記錄

Cas12a (Cpf1)屬於CRISPR家族另一核酸內切酶,它也可被gRNA引導並剪切DNA。但是,它不僅可以切割相結合的單鏈或雙鏈DNA,也剪切其他的DNA。近日,加州大學伯克利分校Jennifer Doudna研究組開發了基於CRISPR的一項新技能——基因偵探(DNA Endonuclease Targeted CRISPR Trans Reporter (DETECTR))。利用單鏈DNA將熒光分子和淬滅分子連接構建成一個報告系統,當CRISPR-Cas12a在gRNA引導下結合到目標DNA並發揮剪切作用時,報告系統中的DNA也被剪切,熒光分子將被解除抑制。此系統在致癌性HPV的人的DNA樣品檢測HPV16和HPV18變現極佳。

布羅德研究所Feng Zhang研究組開發的基於CRISPR的2代SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCKing),原理是利用Cas13a被激活後,可以切割除靶序列外其他的RNA的特徵,引入了解除熒光分子的抑制。此工具可實現一次性多重核酸檢測,可同時檢測4種靶標分子,額外添加的Csm6使得這種工具比它的前身具有更高的靈敏度,並將它開發成微型試紙條檢測方法,簡單明了易操作,已被研究人員成功應用於RNA病毒,如登革熱病毒和寨卡病毒,及人體液樣本檢測。

Broad研究所David R. Liu研究組利用CRISPR/Cas9開發了一種被稱為CAMERA(CRISPR-mediated analog multi-event recording apparatus)的記錄細胞事件的「黑匣子」他們利用這個系統開發出兩種細胞記錄系統,在第一種被稱為「CAMERA 1」的細胞記錄系統中,研究人員利用細菌中質粒的自我復制但又嚴格控制其自身數量的特徵,

將兩種彼此之間略有不同的質粒以穩定的比例轉化到細菌中,隨後在接觸到外來葯物刺激時,利用CRISPR/Cas9對這兩種質粒中的一種進行切割,通過對質粒進行測序並記錄兩種質粒比例的變化來記錄細菌接觸外來刺激的時間。另一種細胞記錄系統被稱為「CAMERA 2」,它利用基於CRISPR/Cas9的鹼基編輯系統實現在細胞內特定信號發生時改變遺傳序列中的單個鹼基,以此實現對諸如感染病毒、接觸營養物等刺激的記錄。這套技術的出現將很大程度的幫助人們進一步了解細胞的各類生命活動的發生發展規律。

9 人類胚胎基因組編輯

2015 年 4 月,中山大學的黃軍利用CRISPR/Cas9介導的基因編輯技術,同源重組修復了胚胎中一個引發地中海貧血β-globin gene (HBB)的突變。

圖片來自kurzgesagt.org

2016年,廣州醫科大學的范勇團隊在三原核受精卵中,應用基因編輯技術CRISPR受精卵中的基因CCR5進行編輯引入CCR5Δ32純合突變由於當時脫靶效率問題突出,產生了鑲嵌式的受精卵。

2017年8月2日,俄勒岡健康與科學大學胚胎細胞和基因治療中心Shoukhrat Mitalipov研究組公布了其應用CRISPR在人類胚胎中進行DNA編輯的結果,糾正了突變的MYBPC3基因,其突變會引起心肌肥厚並將年輕運動員猝死。

閱讀全文

與如何規范基因編輯技術相關的資料

熱點內容
湘典檳榔來了代理得多少錢 瀏覽:269
ups市場如何 瀏覽:367
什麼地方可以做茶葉代理 瀏覽:216
機器人代理商是什麼 瀏覽:850
dma傳輸數據的速度由什麼決定 瀏覽:173
資料庫審計有哪些工具 瀏覽:200
高淳區五金舊貨市場在什麼位置 瀏覽:591
生物性存貨監盤程序包括什麼 瀏覽:819
微信小程序中國移動怎麼用 瀏覽:169
wps中的數據驗證在什麼位置 瀏覽:919
電腦轉轉交易記錄怎麼看 瀏覽:500
股票板塊信息怎麼查 瀏覽:491
溫州男裝市場哪個最好 瀏覽:792
產權界定如何降低交易費用 瀏覽:894
古董交易市場哪個好 瀏覽:599
房山哪裡有農貿菜市場 瀏覽:243
神武4哪些可以交易 瀏覽:268
市場風險為什麼不可以分散 瀏覽:649
麵粉代理利潤怎麼算 瀏覽:883
市面上的信息流產品有哪些 瀏覽:360